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Abstract-Near the fixed end boundaries of cantilever swept plates, a high stress variation, especially in a near 
singular fashion at the re-entrant corner, requires that at least at this region, one requires an analysis with a high 
precision triangular plate bending element. An idealisation of an entire swept plate, especially one of large aspect 
ratio, by high precision elements may be uneconomical and the approximation of regions away from the boundary 
by a suitable beam element will achieve a considerable reduction in problem size. Thus one can achieve a structural 
reduction of the swept plate problem by the use of plate elements in regions of high stress variation, beam elements 
in regions away from the kinematically constrained boundaries and a variationally condensed transition plate/beam 
element which will have the nodes and degrees of freedom of high precision CI continuous plate elements along 
one boundary and the node and degrees of freedom of a beam element along the other boundary. This interphase 
element will provide the required transition from thin plate to thin beam behaviour. In this paper, extensive results 
indicate a considerable reduction in nroblem size and solution time without significant loss of accuracy in stresses. 
displacements and slopes. 

INTRODUCTION 

A thin plate is a commonly used structural element for 
many engineering applications. It is essentially a flat 
structural element with its thickness dimension much 
smaller than its other 2-dimensions and it resists loads 
normal to its plane by a purely flexural action. The 
flexural behaviour of thin plates has received wide 
analytical interest for over four centuries and it is uni- 
versally accepted now that the governing equation for a 
thin isotropic plate is the fourth order bi-harmonic partial 
differential equation. 

In this paper, we are interested in an economical 
numerical analysis of a cantilever swept plate. Near the 
fixed end boundary of a cantilever swept plate or in 
regions of rapid variation of load distribution (e.g. a 
single concentrated load), the stressing phenomenon is 
really 3-dimensional. Even if these are approximated by 
2-dimensional plate theory, there are high bending stress 
variations, especially in a near singular fashion at re- 
entrant or abrupt corners, which requires a more ac- 
curate analyses in these regions. Again, there are regions 
of the plate where the stress variations may be smooth to 
the point of being one dimensional in behaviour and the 
application of the standard bi-harmonic plate equation in 
this region may be superfluous. In the major part of a 
cantilever plate, at sufficient distances away from the 
fixed end, the plate behaves essentially as a beam and it 
is adequate if beam theory can be used in this region. 

While these types of approaches were mentioned in 
the literature decades ago, it has not been easy to realise 
efficient theoretical models within the continuum theories 
because of the necessity of dealing with different 
domains with different field equations and matching the 
kinematic field variables at the interdomain boundaries. 
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The finite element method has proved to be the most 
general and yet the most powerful method of numerical 
analysis for various structural field problems. Since the 
basis of the method is the discretisation of field domains 
by sub-division into very small but non-infinitesimal sub- 
domains, it becomes possible now to model different 
regions of the structure by different types of elements, 
each designed to be efficient in solving a particular type 
of field equation. This paper attempts one such model 
which combines plate theory and beam theory with pro- 
vision to use each theory where required and with inter- 
domain transition achieved by a specially designed inter- 
phase or transition element. 

In this paper, the plate region is modelled by the most 
commonly used high precision C, continuous triangular 
plate element of Cowper et al. [l] which has six degrees 
of freedom at each of the three nodes of the triangle, 
namely the transverse displacement, its two Cartesian 
first order derivatives and its three Cartesian second 
order derivatives: W W,, W,, W,,, W,Xr W,YY The beam 
region is modelled using a torsion-flexure coupled beam 
element [2] which will have as degrees of freedom: W W,, 
W,, W,,, W,xy in the global assembly and whose local 
degrees of freedom are: W 13, OX, JI, I+& where W is the 
transverse displacement, 8, the rotation of the normal and 
& the angle of twist. 

The next section of this paper will examine the 
development of the transition element which will be 
constructed by initially treating the transition region as an 
assembly of plate elements and by a suitable variationally 
and kinematically consistent condensation procedure, 
produce the required nodes and nodal variables to effect 
the transition form the plate element to the beam element. 

2. TRANSITION ELEMENT 

The transition element is essentially an extension of the 
idealisation of the plate region (I of Fig. 1) into the 
transition region (II of Fig. 1) by the same plate elements. 
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I PLATE REGION 

II TRANSITION REGION 
III BEAM REGION 

Fig. I. Division of swept plate into three regions. 

As the number of nodes on the plate side of the transition 
element will be determined by the idealisation to be chosen 
for the plate region, some preliminary work with the 
idealisation of the whole plate with the triangular plate 
elements was necessary [3]. It was determined that five 
nodes along the plate edge of the transition element offered 
an acceptable degree of accuracy. Fig. 2(a) shows the 
idealisation adopted for the transition region. After con- 
densation, the configuration would be as shown in Fig. 2(b). 
This condensation is achieved by the appropriate intro- 
duction of suitable kinematically consistent constraints 
along the right edge of the transition element so that the 
thirty degrees of freedom originally available on this edge 
are constrained to the five at the condensed node by a 
simple reconstruction using a Taylor series expansion 
about this node. 

Let {q} be the vector of global displacements in the 
transition super-element in Fig. 2(a), where 
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DEGREES OF FREEDOM AT EACH 

NODE: w w,x WJ W8,, WJY w,yy 

Fig. 2(a). Transition element before condensation. 

DEGREES OF FREEDOM AT FIVE 
LEFT EDGE NODES: w w,~ w,~ w,,, w,,y w,yy 

DEGREES OF FREEDOM AT SINGLE 
RIGHT EDGE NODE: w w,, w,~ w,,, w,,~ 

Fig. 2(b). Transition element after condensation 

and 

{q,IT = {S,‘, szT, 677 LIT, 8,“) 

{q*jT = {Sf,? 677 SXT, &“, &,,‘I (3 

and {Si} is the vector of nodal displacements at the jth node 
defined as 

{S,‘} = {W w,, w,, w,,, w.,, W.,,}. (3) 

If the assembled stiffness matrix of this region is [K], the 
total strain energy of this region can be written as 

IV = ]qjT [Kl{41. (4) 

The vector {q} may now be replaced by the vector of global 
displacements {q} corresponding to the transition element 
shown in Fig. 2(a), as 

M’ = {qrT, 42’) (5) 

where {q,} remains same as defined in eqn (2) and 

I&]’ = {GT) (6) 

and {&‘} is the vector of nodal displacements at the beam 
node, 

{s;i’} = {W w,, w,, w,,, W,,,l (7) 

If a kinematically consistent transformation from {q2} to 
{q2} is achieved by a transformation matrix [T], then the 
potential energy of the region may be reconstituted using 
eqn. (4). 

where 

{U) = I4’1 [TJTIKl VII id (8) 

[TII = [‘y,;] 
1 

is a 60 X 35 matrix and [I] is the identity matrix. The details 
of the derivation of the [T] matrix are given in the 
Appendix. Clearly, in a variationally consistent way, the 
stiffness matrix of the transition element after conden- 
sation is 

]I?1 = ]T,l’ [Kl VII. (9) 

In a similar way, the rederived consistent load vector 
corresponding to the transition element can be obtained as 

{Es] = [T,lT {PI. 

3. STRESSES IN SWEPT CANTILEVER PLATES 

The determination of stresses in a swept cantilever plate 
is of great interest as they find application in many 
structural situations. The stress analysis of such plates 
pose considerable difficulties, especially due to the singular 
stresses that can occur in the obtuse corner where the fixed 
and free edges meet and the strength of the singularity 
increases with sweep angle [4]. A review of several 
analytical methods used in very early investigations is 
given in [S]. One of the earliest papers to document the 



effect of sweep angle, on tip deflections, rotations and rear 
spar stresses was that of Long and Bisplinghoff [6]. Early 
attempts to treat the outboard part of the wing by 
beam/cantilever approximation were made by Bisch [7] 
and Hall [8]. Some early analytical work on swept wings 
was based on Rayleigh-Ritz procedures using an expan- 
sion for the deflection function in a product series made up 
of a linear combination of the normal modes of free-free 
and clamped-free beams [9, lo]. However, slow con- 
vergence rates for the approximating series, especially at 
large sweep angles made the method impractical. In 
another approach, Schuerch [ll] and Reissner and Stein 
[ 121 assumed the chordwise deflection pattern to be linear 
and the spanwise variation was determined by a variational 
approach. Extension to higher order successive ap- 
proximations for chordwise variations, e.g. parabolic or 
cubic could be made to obtain better quantitative data on 
stress. 
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4. FINITEELEMENT MODELLING 

The mesh generation scheme adopted for the present 
study is shown in Fig. 3. Regions I and II can be controlled 
by choice of the parameters Sp and ST which determine 
the lengths OA, AB as fractions of the span OC and the 
angles of the lines which determine the left and right edges 
of the transition element cx and p. Thus in region 2, the mesh 
generation scheme allows a graded mesh, so that the 
rapidly changing behaviour of the stresses at the obtuse 
junction, especially at higher skew angles can be accom- 
modated. In region 111, an idealisation from one to seven 
beam elements is permitted. 

5. RESlJLTS.4NDDlSCUSSlONS 

Table 1 indicates in tabular form, the variation of results 
obtained for a straight (i.e. unswept) tapered plate of 

Recently there has been a revival of interest in this 
problem, using both analytical and numerical methods. An 
application of Reissners variational principle [13] was 
made to demonstrate a faster convergence with greater 
accuracy in stresses as the principle allows selection of 
moment functions as well as deflection functions and this 
permits better satisfaction of free edge conditions. Coull 
[ 141 studied the variation of bending and twisting moment 
at the root of a cantilever plate having a central tip load and 
it was seen that as the angle of sweep increases, the 
numerical accuracy also decreases due to the rapid varia- 
tion of local bending stress. An application of the finite 
element method was made by Dawe [15]. Parallelogram 
plate elements are used to model the entire region of the 
plate and the deflection patterns over several skew angles 
are presented. However no stresses are presented. 

+h 

CT 

This problem which has a well recorded historical 
interest serves as an excellent example to demonstrate the 
usefulness of structural reduction by transition element 
concept to get accurate stresses and deflections. 

SPAN =OC 

Fig. 3. Mesh gradation for swept plate. 

Table I. Variation of n.d. tip deflection with aspect ratio for tapered plate S, = 0.05, ST = 0.15 
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LOAD 
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CO&ER MIXED ALL MIXED 
7ELE 1 SELE 1 3ELE COWER 7ELE I 5ELE 1 3ELE , 

1.5 0.0855 0.0850 0.0855 0.0876 0.378 0.37L 0 375 0.379 

20 0.0856 0.0850 0.0856 0.0876 0.378 0.371 0.375 0 379 

I 3.0 I. I. I. I I 0 0859 0 0852 0 0857 0 0878 0 379 1 0.374 1 0.375 1 0.379 1 

BEAM 
THEORY 0 0884 0 388 
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varying span S and taper ratio C,/C, = 0.5 for an uniform 
distributed load P per unit area and for a concentrated tip 
load of P units. Non-dimensionalised tip deflections are 
computed from the results of cases run with: E = 1.0, 
t = 1.0, v = 0.3 and C = C, = 1.0, CT = 0.5. Mesh idealisa- 
tions considered are: 

(i) entire region modelled by the high precision trian- 
gular plate bending elements [I] 

(ii) mixed idealisation with plate, transition and beam 
elements (3, 5 and 7 elements are used) 
Region I and II are divided using S,, = 0.05 and Sr = 0.15. 
Comparisons with engineering beam theory results in- 
dicate convergence of results with increasing aspect ratio 
and also rapid convergence of results with increasing 
number of beam elements. It is also interesting to observe 

that in the mixed idealisation, the monotonic convergence 
for deflections is from above as the operations involved in 
the condensation procedures for the transition element do 
not preserve the convergence from below (a feature of 
standard displacement models). 

Table 2 shows the total bending moment M, resisted by 
the root section of a straight tapered cantilever plate of 
varying aspect ratio L, taper ratio CT/C, = 0.5, Se = 0.05, 
ST = 0.15, E = 1.0, t = 1.0, v = 1.0 under a uniform dis- 
tributed load p = 1.0 normal to the plate middle surface. 
This is obtained by a numerical integration of the bending 
stresses M,, obtained by the finite element method at the 
nine nodes at the root (see Fig. 3) using Simpson’s 
quadrature rule. A rapid convergence is seen with increase 
in number of beam elements, again monotonically, and the 
results are within acceptable engineering accuracy of the 
exact value. Also, it is seen that the type of convergence, 
i.e. from above or below depends on the aspect ratio of the 
plate. 

Figure 4 shows the variation of root bending stress M,, 
over one half of the straight tapered plate considered 
above, as a function of the transition element size. We see 
that when the transition element size is increased (by 
increasing ST), thus effectively increasing the region 
modelled as plate/quasi-plate, the stress at the corner, node 
I of Fig. 3, drops rapdily to the zero-value expected for the 
boundary layer when the junction angle is acute. However, 
Table 3 indicates that convergence for the total bending 
moment at the root is in the reverse direction i.e. with 
decreasing ST, a monotonic convergence of the bending 
moment is found. Thus in further applications, especially 
to swept plates, as far as geometry permits, the regions are 
idealised using S, = 0.05, Sr = 0.15 and only when the 

BEAM THEORY ----_--_ ___--_ 

1 2 3 L 
NODE NUMBER 

Fig. 4. Root-bending stress variation as function of transition 

element size for straight tapered plate, S =4.0, Cr/c~ = 0.5. 
S, = 0.05, under u.d.1, 7 elements in beam region. 

Table 3. Total bending moment resisted by root as function of 
transition element size for straight tapered plate, L = 4.0, CT/CR = 

0.5, S, = 0.05. under u.d.1.. 7 elements in beam region. 

ST Mx 

0 15 5 -317 

0 20 5 316 

0 25 5 315 

0.50 5.303 

0 75 5 283 

EXACT 5 333 

Table 2. Total bending moment resisted by root as function of N, number of beam elements, for straight tapered 
plate of varying aspect ratio L, CT/& = 0.5, S, = 0.05, ST = 0.15 under u.d.1 
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geometry requires it (e.g. at large sweep angles), ST is 
raised to 0.25 or 0.35. 

As no accurate closed from results are available in the 
literature, a comparison for a typical example of a swept 
cantilever plate has been made with an idealisation that 
used the high precision triangular elements throughout. 
Figure 5 shows the variation of the bending stress M, at 
the root for a swept beam of length L = 4.0, CR = 1.0, 
CT = 0.5, angle of sweep = 45”, S, = 0.05 and ST = 0.15 
for a 7 and 2 beam element idealisation of the beam region. 
Very good accuracy is observed for the mixed idealisation, 
even with only 2 beam elements in region III. In Fig. 6, the 
variation of transverse deflection and slope of the centre 
line are compared for the three idealisations and show very 
good accuracy. 

Figure 7 presents the variation of the bending stress over 
the first four nodes (where the rapid change of bending 
stress takes place) as the sweep angle 0 is increased for the 
configuration shown. These stresses are non-dimen- 
sionalised as CM,,/M,, where M, is the total moment arm 

&& 

20 UNIFORM DISTRIBUTED LOAD 

18 
t _ 

- COWPER ELEMENT 
IDEALISATION 

16 ___ MIXEO IDEALISATION (WlTH 7 
BEAM ELEMENTS IN III) 
MIXED lDEALlSATlON(WITH 2 
BEAM ELEMENTS IN III) 

1 2 3 L 5 6 7 8 9 

NODE NUMBER 

Fig. 5. Variation of root-bending stress for swept beam, S = 4.0, 
CT/CR = 0.5, sweep angle 0 = 45”, sP = 0.05, .!+ = 0.15. 

Mxx = ROOT STRESS AT NODE 
C = 1.0 

Mx = TOTAL MOMENT RESISTED 
BY ROOT jMxx dy 
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Fig. 7. Root bending stress variation with increasing sweep 
angle. 

resisted at the root due to the action of the concentrated tip 
load. With increasing sweep, the critical bending stress at 
the re-entrant corner is seen to increase rapidly. 

Figure 8 shows a comparison of the present results for 
the deflection under a concentrated tip load for the 

300 - - 60 
. COWPER IOEALISATION 

-+- MIXEO IOEALISATION - 70 

‘DO -- - 80 

Fig. 6. Variation of deflection and slope along span for swept beam, S = 4.0, CT/CR = 0.5, sweep angle 0 = 45”. 
s, = 0.05, ST = 0.15. 
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Fig. 8. Non-dimensionalised tip deflection for swept plate under concentrated tip load with increasing sweep angle. 
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configuration shown with the closed-form formula given 
for a rhombic swept plate of constant thickness given in 
Ref. 1121. The two configurations differ somewhat at the 
tip, in that while the present formulation requires a 
modelling by beam elements whose edges are normal to the 
swept centre line and would dictate a tip that is normal to 
this line, the formulation of Ref. [12] requires an edge 
parallel to the free stream. However, in all other respects, 
e.g. distance of the load point from fixed edge and in chord 
length and span, the two configurations are identical. Thus, 
invoking St. Venant’s principle, it is clear that there should 
be very little effect on the stress diffusion at regions far 
away from the load point. 

In Fig. 8, the dotted line represents the results as 
obtained directly from the explicit formula in Ref. [2] and 
as this theory is based on the assumption of linear 
deformations in the chordwise direction, this should be 
good for unswept wings in torsion. In pure beam bending, 
which would be the nature at low sweep and high aspect 
ratio, these theoretical results would be off by a factor of 
1 - v2 and this upper bound is represented by the dashed- 
dotted line. The present mixed finite element idealisation 
results (solid lines) were obtained with SP = 0.15 and 
Sr = 0.15,0.25 or0.35 as dictated by the planform and with 
seven beam elements in the beam region. The results 
indicate that at low aspect ratio and low sweep, e.g. S = 2,3, 
the finite element results are asymptotically close to the 
theoretical lower bound curve. For higher aspect ratios, 
S = 4,5 the results are close to the upper bound curve and 
the accuracy of the theoretical prediction is good even at 
large sweep angles. Also, the poorer agreement at low 
aspect ratio and high sweep could be due to the slight 
difference in planforms considered in the two models and 
the non-applicability of the St. Venant’s principle. A 
comparison of the root-stress variation with sweep-angle 
in Fig. 9 does indicate that although the trends are identical, 
the finite element method predicts a large but finite stress at 
the re-entrant corner whereas the analytical solution 
indicates that indeterminately large stresses are reached in 
this region. 

6.CONCLUSIONS 

Thus, the principle of using selectively chosen ele- 
ments over different regions of the plate can allow the 
combination of high-precision elements where required, 
with simpler elements, together with transition elements 
to match the two disparate element types in inter-phase 
regions shows that a considerable reduction in problem 
size and solution time can be achieved. The practicality 
of obtaining solutions based on this concept has been 
demonstrated by its application to swept cantilever 
plates. It is quite simple to envisage an extension of this 
problem to the use of a combination of 3D brick ele- 
ments at the root for accurate root stress prediction 
through the root-thickness, and plate and beam elements 
with the appropriate transition elements at regions far 
away from the root. A similar extension is possible with 
shell structures also. Thus accurate stress predictions at 
the root, without the enormous increase in problem size, 
that can be expected if the entire structure is modelled 
by 3D brick elements, is possible. 
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APPENDIX 

Derivation of (T) matrix 
In Fig. IO, AB is the line of transition from the transition element 

element o the adjacent beam element. We must relate the 6 
global d.o.f. (W W,, W,, W,,, W,Xy W,,,) at each of the nodes l-5 
to the 5 d.o.f. offered by the beam element at node 3. We 
consider first, the global degrees of freedom and expand it as a 
Taylor series expansion about node 3 such that 

By evaluating the r.h.s. and its first and second derivatives at all 

Fig. 10. Geometry of right edge of transition element. 
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5 nodes, one can set up the 305 transformation matrix [Tl. A typical submatrix of [Tl at node i on line AB would be 

i 

1 

PiI = ; 
0 
0 
0 

XI 

0 

0 

0 
0 

2 

1 
Xi 

0 

0 
0 

&Yi 

Vi 

Xi 

0 
1 
0 I 


