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Abstract-Image registration and Kalman filter based object 
tracking algorithm is presented.  Image registration algorithms 
viz., sum absolute difference (SAD) and normalized cross 
correlation (NCC) algorithms are used to find the centroid of the 
object of interest and Kalman filter is used to track the centroid of 
the target. Paraboloid interpolation has been used to compute the 
centroid in sub pixel accuracy.  It was observed that in presence 
of salt and pepper noise, the SAD algorithm performed better and 
in presence of Gaussian noise, the NCC performed better.  

 

I. INTRODUCTION 

Many real world applications, military as well as civilian, 

require accurate tracking of moving targets acquired by 

imaging sensors. In military applications, tracking may be used 

in reconnaissance such as that from a satellite where 

continually updated knowledge of a target’s position may be 

useful. In civilian applications, target tracking can be of much 

use in autonomous vehicles, home security etc. Accurate target 

tracking can be used in many instances to alleviate the need for 

constant human intervention and thus may help to achieve a 

much higher degree of autonomy and dependability. 

The general procedure for tracking using data from imaging 

sensors is as follows. The target to be tracked is first specified 

by a human operator. An image registration algorithm then 

searches for the target in each subsequent image obtained by 

the imaging sensor. The measurement resulting from the image 

registration algorithm is passed to a target state estimator. The 

estimator continuously estimates the position of the target 

based on the measurements it has received at any point in time. 

The advantage of using an estimator is that along with the 

position estimates, it gives an estimate of the accuracy of the 

estimation. It takes care of noisy or missing measurements and 

continuously provides the best estimate depending on the 

available measurements, given the measurement/sensor 

accuracy. In this paper, two of the image registration 

algorithms viz., Sum Absolute Difference (SAD) and 

Normalized Cross Correlation (NCC) are used to find the 

centroid of the object of interest. Kalman filter is used to track 

the centroid to maintain the tract. The proposed algorithms are 

implemented and validated using simulated data. 

 

 

II. IMAGE REGISTRATION ALGORITHMS 

An image registration algorithm is used to find the centroid 

of the target of interest in current frame by registering the 

target reference image with current image frame. One of the 

following two algorithms are generally used for this purpose 

A. Sum of Absolute Differences  

The sum absolute differences of two 1-D discrete signals 

)(xI c of length M  and )(xI r  of length P  is calculated 

using the formula 
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In this method, the reference signal is aligned with each 

pixel in the search/current frame and then subtracted from it. 

This yields another signal where each pixel contains the sum of 

the absolute value of the differences between reference signal 

and the search frame, had the reference signal been aligned at 

that pixel in the search frame. The sum of the absolute 

differences will be minimum at the position at which similarity 

is maximum. The sum absolute difference of two 2-

dimensional images )y,x(I c of length NMx  and ),( yxI r  

of length QPx  is calculated using the formula [1] 

1,...,2,1,0

1,...,2,1,0
,),(),(),(

1

0

1

0 −=

−=
−++=∑∑

−

=

−

= Ny

Mx
jiIjyixIyxSAD

P

i

Q

j

rc
    (2) 

B. Normalized Cross Correlation 

Cross-correlation is a measure of the similarity of two 

signals or images. The cross correlation of two 2-D discrete 

signals  )y,x(Ic  and ),( yxI r  of dimensions NMx  and 

QPx  yields a 2-D correlation sequence of dimensions 

)1(x)1( −+−+ QNPM  and is calculated using the 

formula 
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The normalized cross correlation of two 2-D discrete signals 

)y,x(Ic
 and )y,x(I r  of dimensions NMx  and QPx  yields a 

2-D correlation sequence of dimensions 



)1(x)1( −+−+ QNPM  and is calculated using the formula 

[2,3] 
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One can see that the numerator in eq. (4) is a convolution of 

the reference image and current frame. For a current frame of 

size 2M and a reference image of size 2P , it requires 

approximately 22 )1( +− PMP  additions and same number of 

multiplications. Cross correlation can be computed by:  

{ })()( *1

rc IFIFF
−            (5) 

where F is the Fourier transform and superscript star indicates 

complex conjugate 

The complexity using FFT is MM 2

2 log12  real 

multiplications and MM 2

2 log18  real additions/subtractions 

[7]. If P approaches M or larger M & P  then transform 

method becomes faster otherwise the direct convolution 

becomes faster. 

The above algorithms provide the point in the current frame 

around which similarity to the reference image is maximum. In 

other words these algorithms return the position of the centroid 

of the reference image inside the current frame. 

 

III. INTERPOLATION 

An image may often correspond to a large physical area, and 

for better accuracy in tracking, interpolation may be used. 

Interpolation may be of many types: linear, polynomial, spline 

etc. The centroid found by the centroid finding algorithms has 

integral or half integer values. These values are interpolated 

using the function for a paraboloid, based on the following 

formulae to achieve sub-pixel accuracy [1]: 
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Actual centroid of the target is 
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where, q  is a 3x3 matrix with the peak at the center and the 

immediate neighbors of the peak at their corresponding 

positions.  

 

IV. NOISE GENERATION AND SPATIAL FILTERING 

A.   Noise Generation 

Salt & Pepper Noise: This type of noise may be caused by the 

errors in image data transmission, malfunctioning pixel 

elements in the camera sensors, faulty memory locations, or 

timing errors in the digitization process. The corrupted pixels 

are set to zero or maximum value, which gives the image a salt 

and pepper like appearance. Uncorrupted pixels remain 

unchanged.  
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where, rand  is a uniform distribution of random numbers in 

the interval zero to one, d  is a positive real number denoting 

the noise density, )j,i(s  is the original/true image pixel 

and )j,i(x  is the noisy image pixel 

 Gaussian Noise: This type of noise is due to electronic noise 

in the image acquisition system. The noise can be generated 

with zero mean Gaussian distribution described by its standard 

deviation ( σ ).  
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where randn  is normal distribution of random numbers with 

zero mean and unit standard deviation and σ  is standard 

deviation 

 

B.   Spatial Filters 

Two of the most common spatial filters are used for handling 

noisy image data are: 

Mean Filter: This is the simplest linear spatial filter and is 

sometimes called average, smooth, box or uniform filter. It is 

an intuitive and easily implemented method for reducing noise 

in an image. It reduces the amount of intensity variation 

between one pixel and its neighbours. The principle of mean 

filtering is very simple. It is a simple sliding window spatial 

filter that replaces the centre pixel value in the window with 

the average (mean) of all pixel values in the window.  This 

approach has the effect of purging the pixel values which are 

unrepresentative of their neighbors. A mean filter is generally 

implemented by convolution i.e. computing the convolution of 

the noisy image with a kernel. The kernel represents the shape 

and size of the neighborhood to be sampled when calculating 

the mean.  The coefficients in the kernel (convolution mask) 

are non-negative and equal. Masks of different sizes can be 

obtained as: 

2mk
k

)k,k(ones
h =              (10) 

where, )k,k(ones  is a k x k  square matrix having all elements 

as unity, k  indicates the mask size and mkh  is the convolution 

mask 

The filter is normalized so that ∑ = 1)j,i(hmk  which ensures 

that the resulting image has the same contrast as the input 

image. 

Median Filter: This filter is also called rank filter. It is a non-

linear spatial filter that is good at removing impulse noise. This 

filter often does a better job than the mean filter of preserving 

useful detail in the image. The median filtering operation is 



performed on an image by applying the sliding window 

concept. The median is calculated by first sorting all the pixel 

values from the surrounding neighborhood and then replacing 

the pixel being considered with the middle pixel value. 

Unrepresentative pixels in a neighborhood will not affect the 

median value significantly. This filter would not create any 

unrealistic pixel values when the filter straddles an edge 

because the median value is exactly equal to one of the pixel 

value in the neighborhood. 

It has been found that the median filter performs better than 

the mean filter in the presence of salt & pepper noise whereas a 

mean filter performs better than the median filter in the 

presence of Gaussian noise [4,5]. 

 

V. TRAKING ALGORITHM 

The centroid found using the image registration algorithms is 

fed into a simple Kalman filter target tracker [6,7]. In simple case 

the target moves in a straight line with constant velocity. In 

reality though, the velocity of a target is rarely constant, and in 

order to allow for this, a noise component called the state noise is 

included in the model.  If the target position and velocity at time 

k  are given by the state vector )k(X , then under the constant 

velocity assumption the state at time 1k +  will be given by: 

)k(w)k(X)1k(X +=+ Φ
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where, Φ  is the state transition matrix, w  is the additive noise 

component, which is assumed to be having a normal 

distribution.  

The target model noise covariance matrix { }TwwEQ =  is 

assumed to be known, where { }E  denotes statistical 

expectation. If )k(z denotes the measurement vector of the 

target, then it is assumed that )()()( kvkHXkz += , where v  

is the measurement noise, assumed to be independent of the 

state noise )k(w  and normally distributed. If only the position 

is measured then the equation becomes: 
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The measurement noise v is assumed to have known 

covariance { }T
vvER = . 

The purpose of the Kalman filter is to estimate the true state 

vector (the position and velocity) of the target based on the 

measurements it has received so far at any point in time. On 

receiving a new measurement, the Kalman filter updates the 

previous estimate based on the new information contained in 

the measurement. This is done by calculating the error in its 

prediction, which is called the innovation, so named because of 

the new information obtained from the new measurement that 

it represents. The complete set of equations describing the 

Kalman filter is: 
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where, )k|k(X̂  is the estimate at time k after taking the 

measurement into account and )k|1k(X
~

+  is the Kalman filter 

prediction of the state vector before measurement at   time k. 

 

VI. DATA SIMULATION 

The data simulator is implemented in PC MATLAB. The 

Graphical User Interface (GUI) of the simulator is shown in 

Fig-1.  The target may be simulated as a rectangular block 

having a Gaussian distribution of intensities around its centre. 

A Gaussian distribution is given by the equation: 
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where, σ  is the standard deviation and a  is the location 

parameter or mean which in this case corresponds to the center 

of the rectangle 

 

VII. RESULTS AND DISCUSSIONS 

Three simulated data sets are used to test the proposed image 

registration algorithms for target tracking along with the 

Kalman filter. The graphical user interface for target tracking is 

shown in Fig-2. The tracking performance is evaluated using 

performance check metrics [8].  

i. The percentage fit error (PFE) in yx & positions: 
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where tx  is the true x-position and x̂ is the 

estimated x-position 

ii. Root mean square error in position: 
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iii. Mean absolute error in yx & positions 
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Data Set1: 100 frames of noiseless video in which the target 

moves with a constant velocity from the bottom left corner to 

the top right corner processed without any filters or 

interpolation. The performance check metrics viz. PFE, 

RMSPE and MAE are shown in Table-1. All these metrics are 

zero, since there is no noise in the data. Hence, the filter 

performed very well. 

Data Set2:  100 frames of video corrupted by salt & pepper 

noise of noise density 0.05 in which the target moves with 

constant acceleration in a parabolic trajectory from the bottom 

left corner to the bottom right corner. The PFE, RMSPE and 

MAE are shown in Fig-3. It is observed that interpolation 

reduces the estimation error in states when the images are 

corrupted with salt & pepper noise.  

Data Set 3: 100 frames of video corrupted by Gaussian noise 

of variance 0.04 in which the target moves with a constant 

velocity from the top right corner to the bottom right corner. 

The performance checks are shown in Fig-4. In the case of 

image data corrupted with Gaussian noise, interpolation 

reduces the error when the input data is not treated with the 

mean filter. However, on being treated with the mean filter, 

interpolation causes the error to increase. This may be due to 

the blurring effect of the mean filter, which causes the values 

to be more uniform, thus throwing the interpolation algorithm 

off-track. 

It is observed from these results that spatial filter (mean filter 

in this case) improves the tracking performance as does 

interpolation though only marginally. It is also observed that 

NCC fares better than SAD in the estimation of the state vector 

in this data. When comparing SAD and NCC as image 

registration techniques, it is observed from the Fig-3&4 that 

the performance of SAD is better than that of NCC when the 

input image data is corrupted by salt & pepper noise. However, 

when the input image data is corrupted by Gaussian noise, the 

performance of NCC is better than that of SAD. 

 

VIII. CONCLUSIONS 

Image registration algorithms viz. SAD & NCC, spatial 

filtering algorithms as a preprocessing step and an interpolation 

algorithm to achieve sub-pixel accuracy were implemented in 

PC MATLAB. Subsequently, a Kalman filter was used to track 

the centroid of the target obtained using the image registration 

algorithm. Pertaining to the comparison of SAD and NCC as 

image registration techniques: a) in the absence of noise, both 

image registration techniques, proved to be equally accurate, b) 

in the presence of salt & pepper noise, SAD proved to be more 

accurate than NCC and c) in the presence of Gaussian noise, 

NCC proved to be more accurate than SAD. Pertaining to the 

effect of spatial filtering: a) in the presence of salt & pepper 

noise, the median filter drastically reduced the error in state 

estimation when either of the image registration techniques 

was used and b) in the presence of Gaussian noise, the mean 

filter drastically reduced the error in state estimation when 

either of the image registration techniques was used. Pertaining 

to the effect of interpolation, it reduces the error in the state 

estimation. It is thus concluded that the choice of image 

registration technique in any application depends on the 

characteristics of the input image data that may be expected. 

However, in all cases, spatial filtering may be used to achieve 

much better performance. Also, in almost all cases, 

interpolation too may be used to further improve the 

performance at little computational cost. 
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TABLE I 

PFE, RMSPE AND MASE – DATA SET 1 

 SAD NCC 

PFEx 0 0 

PFEy 0 0 

RMSPE 0 0 

MAEx 0 0 

MaeY 0 0 

PFEx: percentage fit error in x-position, PFEy: percentage fit error in y-

position, RMSPE: root mean square error in positon, MAEx: mean absolute 

error in x-position and MAEy: mean absolute error in y-position 



 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 GUI for scenario simulator 

 
Fig. 2 GUI for object tracker 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Performance evaluation metrics (a) without filter and without interpolation,   

(b) with mean filter and without interpolation, (c) without filter and with interpolation 

and (d) with mean filter and interpolation – Data Set 2 

 
Fig. 4 Performance evaluation metrics (a) without filter and without 

interpolation, (b) with mean filter and without interpolation, (c) without filter 

and with interpolation and (d) with mean filter and interpolation – Data Set 3 


