Lecture 2
Variational Principles in Computational Solid Mechanics

Somenath Mukherjee
Scientist,
Structural Technologies Division,
National Aerospace Laboratories (NAL),
Bangalore,
Karnataka, India

Gangan Prathap
Director,
National Institute of Science and Information Resources (NISCAIR),
New Delhi,
India
Lecture 2

Variational Principles in Computational Solid Mechanics

Chapters

1. Principle of virtual work. Reciprocal Theorem.

2. The Least Action Principle in dynamics. (Hamilton’s principle and the Euler-Lagrange equation)

3. Weighted Residual (Galerkin’s) Method and the principle of minimum potential energy.

4. Element formulations using variational principles.
Lecture 2

Chapter 1

Principle of virtual work.
Reciprocal Theorem.
Archimedes was the first person to use the concept of virtual work
1.1 Virtual work (over virtual displacements)

What is virtual displacement?
Virtual displacement is an imaginary displacement of any system in frozen (fixed) time and space, over and above the actual displacement.

In particular, virtual displacement can be imposed upon an actual displacement at equilibrium.

What is virtual work?
Virtual work is the work done by the forces (external and internal) traveling through virtual displacements.
1.2 Principle of Virtual work

For any arbitrary yet admissible set of virtual displacements, superposed over the equilibrium configuration, the net virtual work done by the forces (external and internal) is zero.

Equilibrium \leftrightarrow Zero virtual work

\[\delta W_{ext} - \delta W_{int} = 0 \quad (1.1) \]
Archimedes was the first person to use the concept of Virtual Work in his calculations for the Lever.

"Give me a place to stand on, and I will move the Earth."

Equilibrium: Virtual Work Principle

\[F_1 \delta_1 - F_2 \delta_2 = 0 \]

Geometric Compatibility

\[\frac{\delta_1}{L_1} = \frac{\delta_2}{L_2} \]

Together

\[F_1 L_1 = F_2 L_2 \]
Example 1

Derive the equations of equilibrium for the bar system.

Suppose that actual orthogonal displacement components of load point at equilibrium are \(u \) and \(v \).

Actual strain (at equilibrium) in the \(i \)-th bar is

\[
\varepsilon_i = \frac{u \cdot \cos \alpha_i}{L_i} + \frac{v \cdot \sin \alpha_i}{L_i}
\]

Actual stress (at equilibrium) in the \(i \)-th bar is

\[
\sigma_i = E_i \varepsilon_i = E_i \left(\frac{u \cdot \cos \alpha_i}{L_i} + \frac{v \cdot \sin \alpha_i}{L_i} \right)
\]
Apply a virtual displacement \(\delta u \) along direction \(u \).

By *Principle of virtual work*,

\[
\delta W_{\text{ext}} = \delta W_{\text{int}}
\]

\[
\delta u \cdot P \cos \beta = \sum_{i=1}^{4} \sigma_i \delta \varepsilon_i (A_i L_i)
\]

\[
= \sum_{i=1}^{4} E_i \left(\frac{u \cos \alpha_i}{L_i} + \frac{v \sin \alpha_i}{L_i} \right) \left(\frac{\delta u \cos \alpha_i}{L_i} \right) (A_i L_i)
\]

\[
P \cos \beta = \sum_{i=1}^{4} \frac{E_i A_i}{L_i} \left(u \cos^2 \alpha_i + v \sin \alpha_i \cos \alpha_i \right)
\]
Apply a virtual displacement \(\delta v \) along direction \(v \).

By **Principle of virtual work**, \[
\delta W_{\text{ext}} = \delta W_{\text{int}}
\]

\[
\delta v P \sin \beta = \sum_{i=1}^{4} \sigma_i \delta \varepsilon_i (A_i L_i)
\]

\[
= \sum_{i=1}^{4} E_i \left(\frac{u \cos \alpha_i}{L_i} + \frac{v \sin \alpha_i}{L_i} \right) \left(\frac{\delta v \sin \alpha_i}{L_i} \right) (A_i L_i)
\]

\[
P \sin \beta = \sum_{i=1}^{4} \frac{E_i A_i}{L_i} \left(u \sin \alpha_i \cos \alpha_i + v \sin^2 \alpha_i \right)
\]
The equation of equilibrium for the bar system is

\[
\begin{bmatrix}
\sum_{i=1}^{4} \frac{E_i A_i}{L_i} \left(\cos^2 \alpha_i \right) & \sum_{i=1}^{4} \frac{E_i A_i}{L_i} \left(\sin \alpha_i \cdot \cos \alpha_i \right) \\
\sum_{i=1}^{4} \frac{E_i A_i}{L_i} \left(\sin \alpha_i \cdot \cos \alpha_i \right) & \sum_{i=1}^{4} \frac{E_i A_i}{L_i} \left(\sin^2 \alpha_i \right)
\end{bmatrix}
\begin{bmatrix}
u \\
u
\end{bmatrix}
=
\begin{bmatrix}
P \cos \beta \\
P \sin \beta
\end{bmatrix}
\]

Solving this equation gives displacements \(u \) and \(v \), from which the stresses in the bars can be determined.
1.3 Conservative Systems

In a conservative system, the net work done by the forces in any closed path is zero.

In a conservative system, the net work from one equilibrium state to another is path independent.

\[\oint dW = 0 \quad \Rightarrow \quad \int_{1}^{2} dW = -\int_{2}^{1} dW \]

(1.2)

\[\int_{1}^{2} dW = 0 \]

\[\int_{1}^{2} dW \text{ is path independent} \]
1.4 Symmetry in Linear Elastic Conservative Systems

In a linear elastic conservative system, the stiffness and flexibility matrices are symmetric.

\[k_{ij} = k_{ji} \quad f_{ij} = f_{ji} \] \hspace{1cm} (1.3)

Example 2

Demonstrate the invariance of work done in a bar with changing order of loading.

![Diagram of a bar with points 1 and 2, forces P and Q, and length L]
Case 1. First load point 1 by P and then load 2 by Q.
Work done by loads:
\[
W_{PQ} = \frac{1}{2} P . u_{1,1} + P . u_{1,2} + \frac{1}{2} Q . u_{2,2} = \frac{1}{2} P \left(\frac{P l}{E A} \right) + P \left(\frac{Q l}{E A} \right) + \frac{1}{2} Q \left(\frac{Q l}{E A} \right)
\]

Case 2. First load point 2 by Q and then load 1 by P.
Work done by loads:
\[
W_{QP} = \frac{1}{2} Q . u_{2,2} + Q . u_{2,1} + \frac{1}{2} P . u_{1,1} = \frac{1}{2} Q \left(\frac{Q l}{E A} \right) + Q \left(\frac{P l}{E A} \right) + \frac{1}{2} P \left(\frac{P l}{E A} \right)
\]

This demonstrates the invariance of work done with changing order of loading.

Symmetry in flexibility
\[
f_{12} = \frac{u_{1,2}}{Q} = \left(\frac{l}{E A} \right) \\
f_{21} = \frac{u_{2,1}}{P} = \left(\frac{l}{E A} \right)
\]

\[
f_{12} = f_{21}
\]
1.5 Maxwell Betti’s Reciprocal Theorem

On a given structure (linear and conservative system), the virtual work done by load system \(A \) over virtual displacement for load system \(B \) is equal to the virtual work done by load system \(B \) over virtual displacement for load system \(A \).

\[
\begin{bmatrix} \delta_B \end{bmatrix}^T \{F_A\} = \begin{bmatrix} \delta_A \end{bmatrix}^T \{F_B\} \tag{1.4}
\]

Proof

\[
\begin{bmatrix} \delta_B \end{bmatrix}^T \{F_A\} = \begin{bmatrix} \delta_B \end{bmatrix}^T [K] \{\delta_A\} = \begin{bmatrix} \delta_A \end{bmatrix}^T [K] \{\delta_B\} \\
= \begin{bmatrix} \delta_A \end{bmatrix}^T \{F_B\}
\]

...because stiffness \([K]\) is symmetric (linear conservative system)
Example 3

Determine the support reactions of the portal frame under the loading shown.
\[
\begin{align*}
\{\delta_2\}^T \{F_1\} &= \{\delta_1\}^T \{F_2\} \\
y_{A,2} V_A - y_{C,2} P &= 0 \\
V_A &= \frac{P \cdot y_{C,2}}{y_{A,2}}
\end{align*}
\]
\[\{\delta_3\}^T \{F_1\} = \{\delta_1\}^T \{F_3\} \]

\[x_{A,3} \cdot H_A - y_{C,3} \cdot P = 0 \]

\[H_A = \frac{P \cdot y_{C,3}}{x_{A,3}} \]
\(\{\delta_4\}^T \{F_1\} = \{\delta_1\}^T \{F_4\} \)

\[\theta_{A,4} M_A - y_{C,4} P = 0 \]

\[M_A = \frac{P \cdot y_{C,4}}{\theta_{A,4}} \]
1.6 Consequence of the Reciprocal Theorem
- The unit load method

By Reciprocal Theorem:
\[\Delta.1 = \delta.P \]

But \(\delta.P = (\text{slope}_2).\text{(BM1)} \)

\[\Delta = \int_0^L \left(\frac{M(x)m(x)}{EI} \right) dx = \int_0^L \left(\frac{Px.x}{EI} \right) dx = \frac{PL^3}{3EI} \] (1.5)
Lecture 2
Variational Principles in Computational Solid Mechanics

Somenath Mukherjee
Scientist,
Structural Technologies Division,
National Aerospace Laboratories (NAL),
Bangalore,
Karnataka, India

Gangan Prathap
Director,
National Institute of Science and Information Resources (NISCAIR),
New Delhi,
India
Lecture 2

Chapter 2

The Least Action Principle in dynamics

(Hamilton’s principle and the Euler-Lagrange equation)
“Nature always acts by the shortest paths”.

- Pierre de Fermat
The pioneers of Analytical Mechanics
&
Variational Calculus

Maupertuis
Galileo
Newton
Lagrange
Euler
Fermat
Hamilton
2.1 The Least Action Principle

Early History of Variational Calculus

Archimedes (287-212 BC)

For the first time in history the principle of virtual work (from virtual displacements) was discovered and employed by Archimedes to derive the Lever Rule.

\[F_1 L_1 = F_2 L_2 \quad \text{[} F_1 \delta_1 + F_2 (-\delta_2) = 0 \quad \delta_1 / L_1 = \delta_2 / L_2 \text{]} \]

Pierre de Fermat (1601-1665 AD)

Discovered the Principle of Least time for optical path. Derived Snell’s Law of Refraction (and reflection) of light rays using this principle.

“Nature always acts by the shortest paths”. \(\int_A^B \delta \frac{dI}{v} = 0 \quad \mu_1 \sin \theta_1 = \mu_2 \sin \theta_2 \)

Pierre Louis Moreau de Maupertuis (1698-1759 AD)

Defined a parameter called the Action: \(\text{(Action=} \text{Path Integral of the momentum)} \)

He postulated that Nature always behaves in a way so as to optimize (minimize) this action.

(Euler presented the mathematical proof of this postulate.) \(I = \int_A^B mv.dl \quad ; \quad \int_A^B \delta mv.dl = 0 \)

Johann Bernoulli (1667-1748)

Presented the Brachistochrone problem (finding the path of fastest descent between two fixed points) in Acta Eruditorum and its solution is 1682. Solutions were provided independently by

Isaac Newton, Jacob Bernoulli (elder brother of Johann) and L’ Hospital.
Archimedes’ Lever

Equilibrium of any system under given forces conforms to the vanishing of the Net Virtual work done by these forces traveling over the geometrically compatible virtual displacements:

\[F_1 L_1 = F_2 L_2 \quad [F_1 \delta_1 + F_2 (-\delta_2) = 0 \quad \delta_1 / L_1 = \delta_2 / L_2] \]

Fermat’s Optical Path

From one fixed point to another, Light travels along the path of least time joining these points.

\[
T_{AB} = \frac{\text{Length}}{\text{Speed}} = \frac{\sqrt{a^2 + (d-x)^2} + \sqrt{b^2 + x^2}}{v_1 + v_2}
\]

\[
\frac{dT_{AB}}{dx} = \frac{(x-d)}{v_1 \sqrt{a^2 + (d-x)^2}} + \frac{x}{v_2 \sqrt{b^2 + x^2}}
\]

For the optimized path of least time

\[
\frac{dT_{AB}}{dx} = 0 \Rightarrow \frac{(d-x)}{v_1 \sqrt{a^2 + (d-x)^2}} = \frac{x}{v_2 \sqrt{b^2 + x^2}}
\]

\[
\frac{\sin \alpha_1}{v_1} = \frac{\sin \alpha_2}{v_2}
\]

\[c = \text{speed of light in vacuum} \]
\[v = \text{speed of light in medium} \]

\[\mu = \frac{c}{v} \]

\[\mu \sin \alpha = \text{Constant} \]
The Brachistochrone
The Path of Fastest Descent under gravity from one point to another.
• Given two fixed points A and B.
• What is the path for shortest time of fall from A to B?

For the path for shortest time of fall from A to B

\[\delta \frac{B}{A} \int \frac{dl}{v} = 0 \]
\[\Rightarrow \frac{\sin \alpha}{v} = k(\text{Constant}) \]

\[\text{Speed : } v = \sqrt{2gy} \]

The Brachistochrone is a Cycloid between points A and B.
Radius of generating wheel \(R = \frac{0.25}{(k*\k*g)} \)
Hamilton’s Principle and the Euler-Lagrange Equations

Hamilton’s Principle of Least Action:

Nature determines the path of any particle from point 1 to point 2 in a way so as to minimize the Action I

L = Lagrangian, T = Kinetic Energy, V = Potential Energy

$$I = \int_{1}^{2} L(q, \dot{q}, t) dt \quad L = T - V \quad q = q(t)$$

ΔI (for virtual changes about any path) = $\delta I + \delta^2 I + ..$

For the Action to be a minimum, any virtual changes about the minimum point should lead to a net increase in the Action, i.e.

ΔI (for virtual changes about min) ≥ 0.

$\Delta I > 0 \quad \delta I = 0 \quad \delta^2 I > 0$

i.e. The first variation of the Action (δI) should vanish for small perturbations (virtual displacements) about the minimum point.
First variation for the Lagrangian L (for virtual displacement in **frozen time** is)

$$\delta L = \sum_{i=1}^{n} \left(\frac{\partial L}{\partial q_i} \delta q_i + \frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i \right)$$

subject to $\delta q_i(t = t_1) = \delta q_i(t = t_2) = 0$

Action

$$I = \int_{1}^{2} L(q_i, \dot{q}_i, t) dt$$

$L = T - V$

$q_i = q_i(t)$: generalised co–ordinates

First variation for the Action for any path 1-2 is

$$\delta I = \int_{1}^{2} \delta L(q_i, \dot{q}_i, t) dt = \sum_{i=1}^{n} \int_{1}^{2} \left(\frac{\partial L}{\partial q_i} \delta q_i + \frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i \right) dt$$

For the critical path, $\delta I = 0$

$$0 = \sum_{i=1}^{n} \int_{1}^{2} \left(\frac{\partial L}{\partial q_i} \right) dt + \sum_{i=1}^{n} \left[\left(\frac{\partial L}{\partial q_i} \right)_t \right]$$

$$0 = \int_{1}^{2} \left(\frac{\partial L}{\partial q_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} \right) \delta q_i dt + \sum_{i=1}^{n} \left[\left(\frac{\partial L}{\partial q_i} \right)_t \right]^2$$

$$\left[\delta q_i \frac{\partial L}{\partial \dot{q}_i} \right] = 0$$

$\therefore \delta q_i(t = t_1) = \delta q_i(t = t_2) = 0$

Euler-Lagrange Equation (Conservative Systems)

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0$$
What is a generalized force?

Virtual work = (Virtual physical displacement) \times \text{Physical force}

= (Virtual generalized displacement) \times \text{Generalized force}

= (\delta q_i).Q_i
2.2 Applications of the Least Action Principle

Free Vibration of Single Degree of freedom systems

The Pendulum

Kinetic Energy: \[T = \frac{1}{2} m \dot{x}^2 = \frac{1}{2} m (l \dot{\theta})^2 \]

Potential Energy: \[V = mgl(1 - \cos \theta) \]

Euler-Lagrange Equation (Conservative Systems)
\[\frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} = 0 \quad L = T - V \]

Equation of Motion
\[ml^2 \ddot{\theta} + mgl \sin \theta = 0 \quad \Rightarrow \quad \ddot{\theta} + \frac{g}{l} \sin \theta = 0 \]

Linear Analysis (small oscillations)
\[\ddot{\theta} + \frac{g}{l} \theta = 0 \]
\[\theta = A \sin(\omega_n t + \epsilon) \]

Natural frequency and Time Period
\[\omega_n = \sqrt{\frac{g}{l}} \text{ (rad/sec)} \]
\[f_n = \frac{1}{2\pi} \sqrt{\frac{g}{l}} \text{ (Hz)} \]
\[\tau = \frac{1}{f_n} = 2\pi \sqrt{\frac{g}{l}} \text{ (sec)} \]
2.3 Some simple applications of the Least Action Principle

Free Vibration of Single Degree of freedom systems

Example 1 The Spring-Mass model

Kinetic Energy: \[T = \frac{1}{2} m \dot{x}^2 \]
Potential Energy: \[V = \frac{1}{2} k x^2 \]

Euler-Lagrange Equation (Conservative Systems) \[\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = 0 \quad L = T - V \]

Equation of Motion (free vibration) \[m \ddot{x} + k x = 0 \]

Solution (free vibration) \[x = A \sin(\omega_n t + \epsilon) \]

Natural frequency and Time Period

\[\omega_n = \sqrt{\frac{k}{m}} \text{ (rad / sec)} \quad f_n = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \text{ (Hz)} \quad \tau = \frac{1}{f_n} = 2\pi \sqrt{\frac{m}{k}} \text{ (sec)} \]
Free Vibration of Multi-degree of freedom systems

Example 2 The Spring-Mass model for a 2 DOF system

Kinetic Energy: \[T = \frac{1}{2} m_1 \dot{x}_1^2 + \frac{1}{2} m_2 \dot{x}_2^2 \]

Potential Energy: \[V = \frac{1}{2} k_1 x_1^2 + \frac{1}{2} k_2 (x_2 - x_1)^2 \]

Euler-Lagrange Equation (Conservative Systems)

Equation of Motion (free vibration)

\[
\begin{bmatrix}
m_1 & 0 \\
0 & m_2
\end{bmatrix}
\begin{bmatrix}
\ddot{x}_1 \\
\ddot{x}_2
\end{bmatrix} + \begin{bmatrix}
k_1 + k_2 & -k_2 \\
-k_2 & k_2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

Solution

\[
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
A_1 \\
A_2
\end{bmatrix} \cdot \sin(\omega_n t + \epsilon)
\]

\[-\omega_n^2 \begin{bmatrix}
m_1 & 0 \\
0 & m_2
\end{bmatrix}
\begin{bmatrix}
A_1 \\
A_2
\end{bmatrix} + \begin{bmatrix}
k_1 + k_2 & -k_2 \\
-k_2 & k_2
\end{bmatrix}
\begin{bmatrix}
A_1 \\
A_2
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix} \Rightarrow \det \begin{bmatrix}
k_1 + k_2 & -k_2 \\
-k_2 & k_2
\end{bmatrix} - \omega_n^2 \begin{bmatrix}
m_1 & 0 \\
0 & m_2
\end{bmatrix} = 0
\]

Eigenvalues and Eigen-modes

\[\omega_1^2: \{ \phi_1 \} = \begin{bmatrix}
A_{1,1} \\
A_{2,1}
\end{bmatrix} \quad \omega_2^2: \{ \phi_2 \} = \begin{bmatrix}
A_{1,2} \\
A_{2,2}
\end{bmatrix}\]
The Spring-Mass model for a 2 DOF system (Continued)

Orthogonality of the Eigen-modes (Normal modes)

\[
\{\phi_1\}^T [K] \{\phi_2\} = \{\phi_2\}^T [K] \{\phi_1\} = 0 \\
\{\phi_1\}^T [M] \{\phi_2\} = \{\phi_2\}^T [M] \{\phi_1\} = 0
\]

\[
\{\phi_1\}^T [K] \{\phi_1\} = k_{11} \\
\{\phi_2\}^T [K] \{\phi_2\} = k_{22} \\
\{\phi_1\}^T [M] \{\phi_1\} = m_{11} \\
\{\phi_2\}^T [M] \{\phi_2\} = m_{22}
\]

Natural Frequencies (rad/sec)

\[
\omega_1 = \sqrt{\frac{k_{11}}{m_{11}}} \\
\omega_2 = \sqrt{\frac{k_{22}}{m_{22}}}
\]

Estimation of dynamic response for \(q_1(t) \) and \(q_2(t) \):

\[
[M] \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} + [K] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} F_1(t) \\ F_2(t) \end{bmatrix}
\]

Modal superposition:

\[
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = q_1(t) \{\phi_1\} + q_2(t) \{\phi_2\} = [\{\phi_1\}, \{\phi_2\}] \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = [\phi] [q]
\]

Pre-multiply equation of motion by modal matrix:

\[
[\phi]^T [M] \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} + [\phi]^T [K] \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} Q_1(t) \\ Q_2(t) \end{bmatrix}
\]

\[
\begin{bmatrix} m_{11} & 0 \\ 0 & m_{22} \end{bmatrix} \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} + \begin{bmatrix} k_{11} & 0 \\ 0 & k_{22} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} Q_1(t) \\ Q_2(t) \end{bmatrix}
\]

Modal Decoupling:

\[
m_{ii} \ddot{q}_i + k_{ii} q_i = Q_i(t)
\]

\[
Q_i(t) = \{\phi_i\}^T \begin{bmatrix} F_1(t) \\ F_2(t) \end{bmatrix}
\]
The Spring-Mass model: equal stiffnesses and masses

Equation of Motion (free vibration):

\[
\begin{bmatrix}
m & 0 \\
0 & m
\end{bmatrix}
\begin{bmatrix}
\ddot{x}_1 \\
\ddot{x}_2
\end{bmatrix}
+ \begin{bmatrix}
2k & -k \\
-k & k
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

Solution:

\[
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \begin{bmatrix}
A_1 \\
A_2
\end{bmatrix}
\sin(\omega_n t + \epsilon)
\]

Characteristic Equation:

\[
\det \begin{bmatrix}
2k & -k \\
-k & k
\end{bmatrix}
- \omega_n^2 \begin{bmatrix}
m & 0 \\
0 & m
\end{bmatrix}
= 0
\]

Natural frequencies (rad/sec) and Eigen-modes

\[
\omega_1 = (0.618) \sqrt{\frac{k}{m}} : \{\phi_1\} = \begin{bmatrix} 1 \\ 1.618 \end{bmatrix}
\]

\[
\omega_2 = (1.618) \sqrt{\frac{k}{m}} : \{\phi_2\} = \begin{bmatrix} 1 \\ -0.618 \end{bmatrix}
\]

Observation: The natural frequencies and mode shapes for this particular system are related to the Golden Numbers :

\((1+\sqrt{5})/2=1.618 \text{ and } (1-\sqrt{5})/2=-0.618 \ (!!!)\)
Stationary Property of the Rayleigh Quotient at the Normal Modes of Vibration

The Spring-Mass model: equal stiffnesses and masses

Solution: \[
\begin{aligned}
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} &= \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \cdot \sin(\omega t) \\
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} &= \omega \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \cdot \cos(\omega t)
\end{aligned}
\]

Conservation of Energy:
\[KE_{\text{max}} = PE_{\text{max}} \]
\[
\frac{1}{2} m \omega^2 X_1^2 + \frac{1}{2} m \omega^2 X_2^2 = \frac{1}{2} kX_1^2 + \frac{1}{2} k(X_2 - X_1)^2
\]

Rayleigh Quotient

\[
\omega^2 = \frac{k}{m} \left\{ \left(\frac{X_2}{X_1} - 1 \right)^2 + 1 \right\}
\]

Observation: The Rayleigh Quotient is extremum (stationary) at the normal modes.
Example 3 A rigid car chassis as a 2 DOF system

Case 1: Point of reference for displacements: Center of mass, CM

Expressions for kinetic energy T, potential energy V and the Lagrangian L are

\[T = \frac{1}{2} m h_{CM}^2 + \frac{1}{2} I_{CM} \dot{\alpha}^2 \]

\[V = \frac{1}{2} k_1 \Delta_1^2 + \frac{1}{2} k_2 \Delta_2^2 = \frac{1}{2} k_1 \{a_0 \alpha - h_{CM}\}^2 + \frac{1}{2} k_2 \{b_0 \alpha + h_{CM}\}^2 \]

\[L = T - V = \frac{1}{2} m h_{CM}^2 + \frac{1}{2} I_{CM} \dot{\alpha}^2 - \frac{1}{2} k_1 \{a_0 \alpha - h_{CM}\}^2 - \frac{1}{2} k_2 \{b_0 \alpha + h_{CM}\}^2 \]
Example 3 A rigid car chassis as a 2 DOF system (Continued)

Case 1: Point of reference for displacements: Center of mass, CM

Lagrange’s Equations
\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{h}} - \frac{\partial L}{\partial h} = 0 \quad \frac{d}{dt} \frac{\partial L}{\partial \dot{\alpha}} - \frac{\partial L}{\partial \alpha} = 0
\]

Equations of free vibration in matrix form
\[
\begin{bmatrix}
 m & 0 \\
 0 & I_{CM}
\end{bmatrix}
\begin{bmatrix}
 \ddot{h}_{CM} \\
 \ddot{\alpha}
\end{bmatrix} + \begin{bmatrix}
 k_1 + k_2 & -(k_1 a_0 - k_2 b_0) \\
 -(k_1 a_0 - k_2 b_0) & k_1 a_0^2 + k_2 b_0^2
\end{bmatrix}
\begin{bmatrix}
 h_{CM} \\
 \alpha
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0
\end{bmatrix}
\]

Note:
For displacements at the center of mass, the system equations are inertially decoupled. But the system equations are in general stiffness coupled.

If however, the spring stiffness values be in the ratio
\[
\frac{k_1}{k_2} = \frac{b_0}{a_0} \quad \Rightarrow \quad k_1 a_0 - k_2 b_0 = 0
\]
then the system is also stiffness decoupled.
Example 3 A rigid car chassis as a 2 DOF system (Continued)

Case 2: A special point of reference S for displacements so that

$$\frac{b_s}{a_s} = \frac{k_1}{k_2} \Rightarrow k_1 a_s - k_2 b_s = 0$$

This means that under an external force F acting the point S, one can have pure translation (no rotation) of the rigid chassis without any rotation (equal and opposite moments are induced by the springs about point S).
Example 3 A rigid car chassis as a 2 DOF system (Continued)

Case 2: A special point of moment balance S for displacements

\[
T = \frac{1}{2} m \dot{h}_{CM}^2 + \frac{1}{2} I_{CM} \ddot{\alpha}^2 = \frac{1}{2} m (\dot{h}_S + e \ddot{\alpha})^2 + \frac{1}{2} I_{CM} \ddot{\alpha}^2 = \frac{1}{2} m \dot{h}_S^2 + m e \dot{h}_S \dddot{\alpha} + \frac{1}{2} I_S \dddot{\alpha}^2
\]

\[
I_S = I_{CM} + m e^2
\]

\[
V = \frac{1}{2} k_1 \Delta_1^2 + \frac{1}{2} k_2 \Delta_2^2 = \frac{1}{2} k_1 \{a_s \alpha - h_s\}^2 + \frac{1}{2} k_2 \{b_s \alpha + h_s\}^2
\]

\[
L = T - V = \frac{1}{2} m \dot{h}_S^2 + m e \dot{h}_S \dddot{\alpha} + \frac{1}{2} I_S \dddot{\alpha}^2 - \frac{1}{2} k_1 \{a_s \alpha - h_s\}^2 - \frac{1}{2} k_2 \{b_s \alpha + h_s\}^2
\]
Case 2: A special point of moment balance S for displacements

Lagrange’s Equations:
\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{h}} - \frac{\partial L}{\partial h} = 0 \quad \text{and} \quad \frac{d}{dt} \frac{\partial L}{\partial \dot{\alpha}} - \frac{\partial L}{\partial \alpha} = 0
\]

Apply the condition:
\[
\frac{b_s}{a_s} = \frac{k_1}{k_2} \quad \Rightarrow \quad k_1 a_s - k_2 b_s = 0
\]

Equations of free vibration in matrix form:
\[
\begin{bmatrix}
m & me \\
me & I_{CM}
\end{bmatrix}
\begin{bmatrix}
\ddot{h}_s \\
\ddot{\alpha}
\end{bmatrix} +
\begin{bmatrix}
k_1 + k_2 & 0 \\
0 & k_1 a_s^2 + k_2 b_s^2
\end{bmatrix}
\begin{bmatrix}
h_s \\
\alpha
\end{bmatrix} =
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

Note:
For displacements at the special point S for balance of moments from spring forces the system equations are stiffness decoupled.
But the system equations are in general inertially coupled.
If CM and S coincide then system is both stiffness wise and inertially decoupled.
2.4 Constrained Systems; Lagrange’s Multipliers

A system of ‘n’ degrees of freedom (DOFs) is holonomic if all its DOFs are mutually independent.

A system is non-holonomic when some of its ‘n’ degrees of freedom (DOFs) are dependent on the others. This means that it has some ‘r’ constraints so that the actual number of its independent degrees of freedom is \((n-r)\).

We need to find the stationary points of the functional

\[
I = \int_{t_1}^{t_2} L(q_i, \dot{q}_i, t) \, dt \quad i = 1, 2, \ldots, n
\]

Subject to \(r\) constraints

\[
f_j(q_i) = \text{constant} \quad \text{or} \quad \int_{t_1}^{t_2} f_j(q_i, \dot{q}_i, t) \, dt = \text{constant} \quad j = 1, 2, \ldots, r
\]

Procedure:

1. Modify the Lagrangian

 \[
 L^* = L + \sum_{j=1}^{r} \lambda_j f_j
 \]

2. Equation of motion can be had from

 \(\delta I = 0\) where

 \[
 I = \int_{t_1}^{t_2} L^*(q_i, \dot{q}_i, t) \, dt
 \]

3. Modified Lagrange’s Equations:

 \[
 \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} + \sum_{j=1}^{r} \lambda_j \frac{\partial f_j}{\partial q_i} = 0 \quad \text{or} \quad Q_i : \text{Non-conservative force}
 \]
Example 4 The Atwood Machine

Find the expressions for accelerations of the two unequal masses suspended from the machine by an in-extensible string.

Method 1: Using Newton’s Law

\[m_1 a = T - m_1 g \](i)

\[m_2 a = m_2 g - T \](ii)

(i) + (ii)

\[(m_1 + m_2) a = (m_2 - m_1) g \]

\[a = \frac{(m_2 - m_1)}{(m_2 + m_1)} g \quad m_2 \geq m_1 \]

\[\ddot{x} = -a \uparrow \quad \ddot{y} = a \downarrow \]

Method 2: Using Lagrange’s Equations

\[KE = \frac{1}{2} m_1 \dot{x}^2 + \frac{1}{2} m_2 \dot{y}^2 = \frac{1}{2} m_1 \dot{x}^2 + \frac{1}{2} m_2 (-\dot{x}^2) = \frac{1}{2} (m_1 + m_2) \dot{x}^2 \]

\[V = -m_1 gx - m_2 gy = -m_1 gx - m_2 g \{-x - (\pi R + \ell)\} = -(m_1 - m_2).gx + (\text{constant}_h) \]

\[L = KE - V \]

\[L = \frac{1}{2} (m_1 + m_2) \dot{x}^2 - [-(m_1 - m_2).gx + (\text{constant}_h)] \]

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0 \quad \rightarrow \quad (m_1 + m_2) \ddot{x} - (m_1 - m_2) g = 0 \]

\[\ddot{x} = \frac{(m_1 - m_2)}{(m_1 + m_2)} g \quad \ddot{y} = -\ddot{x} = \frac{(m_2 - m_1)}{(m_1 + m_2)} g \]
Example 4 The Atwood Machine (continued)

Method 3: Using Lagrange’s Equations with Lagrange’s Multipliers

Constraint Equation

\[x + y + \pi R = \ell = \text{fixed length of string} \]

\[f(x, y) = x + y = \text{constant} \]

\[\ddot{y} = -\ddot{x} \]

Lagrangian \(L \)

\[KE = \frac{1}{2} m_1 \dot{x}^2 + \frac{1}{2} m_2 \dot{y}^2 \]

\[V = -m_1 g x - m_2 g y \]

\[L = KE - V = \frac{1}{2} m_1 \dot{x}^2 + \frac{1}{2} m_2 \dot{y}^2 + (m_1 g x + m_2 g y) \]

Lagrange’s Equations

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} + \lambda \left(\frac{\partial f}{\partial x} \right) = 0 \quad \rightarrow \quad m_1 \ddot{x} - m_1 g + \lambda g = 0
\]

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{y}} - \frac{\partial L}{\partial y} + \lambda \left(\frac{\partial f}{\partial y} \right) = 0 \quad \rightarrow \quad m_2 \ddot{y} - m_2 g + \lambda g = 0
\]

Solving all three equations:

\[
\ddot{x} = \frac{(m_1 - m_2)}{(m_1 + m_2)} g \quad \ddot{y} = -\ddot{x} = \frac{(m_2 - m_1)}{(m_1 + m_2)} g
\]

\[
\lambda = m_1 (g - \ddot{x}) = T
\]

The Lagrange Multiplier is the constraint force, viz. tension \(T \) is string
Example 5 A simple constrained minimal problem

Minimize the function

\[z(x, y) = x^2 + y^2 - 2xy - 4x \]

Subject to the constraint

\[y - 2x = 0 \]

<table>
<thead>
<tr>
<th>Using Direct Substitution</th>
<th>Using Lagrange’s Multiplier</th>
<th>Using Penalty Method (This type is used to describe many FE formulations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = 2x)</td>
<td>(z_1 = x^2 + y^2 - 2xy - 4x + \lambda (y - 2x))</td>
<td>(z_2 = x^2 + y^2 - 2xy - 4x + \kappa (y - 2x)^2)</td>
</tr>
<tr>
<td>(\therefore z = x^2 + y^2 - 2xy - 4x = x^2 - 4x)</td>
<td>At stationary point (minima)</td>
<td>At stationary point (minima)</td>
</tr>
<tr>
<td>(\frac{\partial z}{\partial x} = 2x - 4)</td>
<td>(\frac{\partial z_1}{\partial x} = 2x - 2y - 4 - 2\lambda = 0)</td>
<td>(\frac{\partial z_2}{\partial x} = 2x - 2y - 4 - 4\kappa (y - 2x) = 0)</td>
</tr>
<tr>
<td>(\text{At stationary point})</td>
<td>(\frac{\partial z_1}{\partial y} = -2x + 2y + \lambda = 0)</td>
<td>(\frac{\partial z_2}{\partial y} = -2x + 2y + 2\kappa (y - 2x) = 0)</td>
</tr>
<tr>
<td>(\frac{\partial z}{\partial y} = 0) (\Rightarrow (x_m, y_m) = (2, 4))</td>
<td>(\frac{\partial z_1}{\partial \lambda} = -2x + y = 0)</td>
<td>Solving;</td>
</tr>
<tr>
<td>(z_{\text{min}} = x_m^2 - 4x_m = -4)</td>
<td>Solving;</td>
<td>(x_m = 2 \left(1 + \frac{1}{\kappa} \right), \quad y_m = 2 \left(2 + \frac{1}{\kappa} \right))</td>
</tr>
<tr>
<td></td>
<td>(x_m = 2, \quad y_m = 4 \quad (z_1)_m = -4)</td>
<td>As (\kappa \rightarrow \infty),</td>
</tr>
<tr>
<td></td>
<td>(x_m \rightarrow 2, \quad y_m \rightarrow 4 \quad (z_2)_m \rightarrow -4)</td>
<td>(x_m \rightarrow 2, \quad y_m \rightarrow 4 \quad (z_2)_m \rightarrow -4)</td>
</tr>
</tbody>
</table>
Lecture 2
Variational Principles in Computational Solid Mechanics

Somenath Mukherjee
Scientist, Structural Technologies Division, National Aerospace Laboratories (NAL), Bangalore, Karnataka, India

Gangan Prathap
Director, National Institute of Science and Information Resources (NISCAIR), New Delhi, India
Lecture 2

Chapter 3

Weighted Residual (Galerkin’s) method and the principle of minimum potential energy.
Lord Rayleigh
James Clerk Maxwell
3.1 The self adjoint operator

Consider a differential equation: \(\mathcal{L}(u) = f \)

If
\[
\int_{\Omega} v \mathcal{L}(u) \, d\Omega = \int_{\Omega} u \mathcal{L}^* (v) \, d\Omega + \int_{\Gamma} \{ d(v) f \, (u) - d(u) f^* (v) \} \, d\Gamma \\
\Gamma = \Gamma_d \cup \Gamma_f
\]

If
\[
\int_{\Omega} v \mathcal{L}(u) \, d\Omega = \int_{\Omega} u \mathcal{L}^* (v) \, d\Omega \Rightarrow \mathcal{L} \text{ is self-adjoint operator}
\]

This is the consequence of the Reciprocal Theorem (valid for conservative systems only).

A conservative system is characterized by a differential equation of self-adjoint operator. A conservative system has a symmetric stiffness matrix (or compliance matrix). The energy of a conservative system is independent of changing order of loads.
Example 1. Show that the linear differential operator for the axially loaded bar is self-adjoint.

\[
-\frac{d}{dx} \left(EA \frac{du}{dx} \right) = q
\]

\[\mathcal{L} = -\frac{d}{dx} \left(EA \frac{d}{dx} \right)\]

\[
\int v \mathcal{L}(u) \, d\Omega = \int_0^L v \left[-\frac{d}{dx} \left(EA \frac{du}{dx} \right) \right] \, dx = \left[v \left(- EA \frac{du}{dx} \right) \right]_{x=0}^{x=L} + \int_0^L \frac{dv}{dx} \left(EA \frac{d}{dx} \right) \, dx
\]

\[
= \left[v \left(- EA \frac{du}{dx} \right) \right]_{x=0}^{x=L} + \int_0^L \frac{du}{dx} \left(EA \frac{dv}{dx} \right) \, dx + \left[\left(EA \frac{dv}{dx} \right) u \right]_{x=0}^{x=L} + \int_0^L \frac{u}{dx} \left(- EA \frac{dv}{dx} \right) \, dx
\]

\[
= \int_0^L u \left[-\frac{d}{dx} \left(EA \frac{dv}{dx} \right) \right] \, dx + \left[v \left(- EA \frac{du}{dx} \right) \right]_{x=0}^{x=L} - \left[u \left(- EA \frac{dv}{dx} \right) \right]_{x=0}^{x=L}
\]

\[
\int v \mathcal{L}(u) \, d\Omega = \int u \mathcal{L}^*(v) \, d\Omega + \{vf(u) - uf^*(v)\}_{\Gamma} = \Gamma_d + \Gamma_f
\]

Reciprocal Theorem
3.2 Weighted Residual Method
for a system of differential equation of equilibrium with
self-adjoint operator

Consider a differential equation:
\[\mathcal{L}(u) = f \]

Use an admissible trial function \(\delta u^h \) as virtual displacement, and
\(u \) is the analytical solution

\[
\int_{\Omega} \delta u^h \{ \mathcal{L}(u) - f \} d\Omega = a(\delta u^h, u) - (\delta u^h, f) - [\delta u^h R]_B
\]

B is the domain boundary. Boundary terms vanish when either
\(\delta u^h = 0 \) (specified kinematic boundary condition) or reaction \(R=0 \)
at boundary B.

\[
0 = a(\delta u^h, u) - (\delta u^h, f)
\]

\[
\Rightarrow a(\delta u^h, u) = (\delta u^h, f)
\] \hspace{1cm} (3.2)

For a self-adjoint operator, \(a(u,v) \) is symmetric bilinear functional

\[
\int_{\Omega} \delta u^h \mathcal{L}(u) d\Omega = \int_{\Omega} u \mathcal{L}^*(\delta u^h) d\Omega \quad \Rightarrow a(\delta u^h, u) = a(u, \delta u^h)
\] \hspace{1cm} (3.3)
Case 1

If the trial function is a variation of the exact displacement

\[\delta u^h = \delta u \]

\[a(\delta u, u) = (\delta u, f) \]

\[\delta \frac{1}{2} a(u, u) = \delta W \]

Here \(\frac{1}{2} a(u, u) \) is the analytical strain energy \(U \) of the system and \(\delta W \) is the virtual work done by the external forces.

If we define a system potential energy (for a conservative system)

\[\Pi = \frac{1}{2} a(u, u) - (u, f) = U - W \] \hspace{1cm} (3.4)

Then equilibrium condition : \(\delta \Pi = 0 \)

Principle of stationary potential energy
Case 2

If the exact function (of differential equation) is replaced by the trial function

\[u^h(x) = \sum_{i=1}^{N} a_i \phi_i(x) \quad \delta u^h(x) = \sum_{i=1}^{N} (\delta a_i) \phi_i(x) \]

Thus

\[\mathcal{L}(u^h) - f = e \quad e = \text{residual} \]

Weighted residual statement is

\[\int_{\Omega} \delta u^h \left\{ \mathcal{L}(u^h) - f \right\} d\Omega = 0 \]

\[\delta a_i \int_{\Omega} \phi_j \left\{ \mathcal{L} \left(\sum_{i=1}^{N} a_i \phi_i(x) \right) - f \right\} d\Omega = 0 \quad j = 1, 2, \ldots, N \]

(3.5)

If we define a system potential energy (for a conservative system)

\[\Pi = \frac{1}{2} a(u^h, u^h) - (u^h, f) = U - W \]

Then equilibrium condition: \(\delta \Pi = 0 \)

(3.6)
Rayleigh Ritz Method (RRM) or Galerkin’s Method (GM);
Which should we use?

For **conservative systems**, the equations of equilibrium (with any given approximate function for displacement) determined by both Rayleigh–Ritz and Galerkin’s Methods are identical.

For **non-conservative systems**, we cannot adopt the Rayleigh-Ritz Method (RRM), since the reciprocal theorem (symmetry; equation (3.1)) does not hold, and consequently we cannot define the potential energy functional π for the system.

Such non-conservative systems are described by differential equations with Non-self-adjoint operators.

However, the virtual work principle remains valid even for non-conservative systems. Thus **Galerkin’s method (GM) of weighted residuals** can be applied even to non-conservative systems to establish the finite element equations (force-displacement relation) of equilibrium from the corresponding differential equations of non-self-adjoint differential operators.

Message: Use **RRM** or **GM** for conservative systems
Use only **GM** for non-conservative systems
Example 2. Weighted residual statements for the axially loaded bar.

\[-\frac{d}{dx}\left(EA \frac{du}{dx} \right) = q \]

\[\mathcal{L} = -\frac{d}{dx}\left(EA \frac{d}{dx} \right) \]

\[
\int_{\Omega} \delta u^h \{ \mathcal{L}(u) - q \} d\Omega = \int_{0}^{L} \delta u^h \left[-\frac{d}{dx}\left(EA \frac{du}{dx} \right) - q \right] dx
\]

\[
0 = \left[\delta u^h \left(-EA \frac{du}{dx} \right) \right]_{x=0}^{x=L} + \int_{0}^{L} d\delta u^h \left(EA \frac{du}{dx} \right) dx - \int_{0}^{L} \delta u^h q dx
\]

\[0 = a(\delta u^h, u) - (\delta u^h, q) \]

Weighted residual statement is

\[\delta a_i \int_{\Omega} \left\{ \mathcal{L} \left(\sum_{i=1}^{N} a_i \phi_i(x) \right) - q \right\} d\Omega = 0 \quad j = 1, 2, \ldots, N \]

\[\delta \Pi = 0 \]

\[\Pi = \frac{1}{2} a(u^h, u^h) - (u^h, q) = \frac{1}{2} \int_{0}^{L} \left(\frac{du^h}{dx} \right) EA \left(\frac{du^h}{dx} \right) dx - \int_{0}^{L} u^h q dx \]

Galerkin’s Method

Rayleigh-Ritz Method
3.3 The principle of minimum potential energy and equations of equilibrium

For a conservative (self-adjoint) system, we can identify a potential energy functional Π, so that at equilibrium, any admissible virtual displacement leads to

$$\delta \Pi = 0$$

Virtual work

Equations of Equilibrium
Incompatible elements in harmony (equilibrium)

Compatible elements not in harmony
The principle of minimum potential energy
(for searching equilibrium)

“Of all the possible admissible displacements (satisfying the kinematic boundary conditions) the one that corresponds to equilibrium (of forces) is the one that makes the potential energy stationary.”

(i.e. any virtual displacement about equilibrium (of forces) brings about a vanishing first variation of potential Energy)

\[\delta \Pi = 0 \text{ for } \delta u \]

A stable equilibrium makes the potential energy a minimum
The principle of stationary complementary energy (for searching compatibility)

“Of all the possible admissible forces (in equilibrium) the one that corresponds to displacement compatibility is the one that makes the complementary energy stationary.”

(i.e. any virtual change of forces in equilibrium brings about a vanishing first variation of complementary energy).

\[\delta \Pi^* = 0 \text{ for } \delta F \] \hspace{1cm} (3.8)

Complementary energy and its variation is

\[\Pi^* = U^* - W \quad \delta \Pi^* = \delta U^* - \delta W \text{ (for } \delta F) \]
3.4 Castigliano’s Theorems

The principle of minimum potential energy
(for searching equilibrium)

\[\delta \Pi = \delta U - \sum_{i=1}^{n} P_i \delta u_i = 0 \]

\[P_i = \frac{\partial U}{\partial u_i} \tag{3.9} \]

The principle of stationary complementary energy
(for searching compatibility)

\[\delta \Pi^* = \delta U^* - \sum u_i \delta P_i = 0 \]

\[u_i = \frac{\partial U^*}{\partial P_i} \tag{3.10} \]

For a linear structure, \(U^* = U \)

Complementary energy/volume equals strain energy/volume
Example 3. Derive the equations of equilibrium and boundary conditions for the axially loaded bar with spring supported ends.

Potential energy functional \(\Pi = U - W \)

\[
\Pi = \left[\frac{1}{2} \int_0^L \left(\frac{d\delta u}{dx} \right)^2 dx + \frac{1}{2} L_0 u_0^2 + \frac{1}{2} L_L u_L^2 \right] - \int_0^L uqdx
\]

\[
\delta \Pi = \delta \left(\frac{d\delta u}{dx} \right) EA \left(\frac{d\delta u}{dx} \right) dx + k_0 u_0 \delta u_0 + k_L u_L \delta u_L - \int_0^L \delta u qdx
\]

\[
\delta \Pi = \left[EA \left(\frac{d\delta u}{dx} \right) \right]_{x=0}^{x=L} + k_0 u_0 \delta u_0 + k_L u_L \delta u_L - \int_0^L \delta u \left[\frac{d}{dx} \left(EA \frac{d\delta u}{dx} \right) \right] - \int_0^L \delta u qdx
\]

\[
\delta \Pi = \left[-EA \frac{d\delta u}{dx} + k_0 u_0 \right]_{x=0} \delta u_0 + \left[EA \frac{d\delta u}{dx} + k_L u_L \right]_{x=L} \delta u_L + \int_0^L \delta u \left[-\frac{d}{dx} \left(EA \frac{d\delta u}{dx} \right) - q \right] dx
\]
Equilibrium \(\delta \Pi = 0 \)

\[
0 = \left[\left(-EA \frac{du}{dx} + k_0 u_0 \right) \right]_{x=0} \delta u_0 + \left(EA \frac{du}{dx} + k_L u_L \right)_{x=L} \delta u_L + \int_0^L \delta u \left[-\frac{d}{dx} \left(EA \frac{du}{dx} \right) - q \right] dx
\]

For non-trivial arbitrary, yet admissible virtual displacements

\[-\frac{d}{dx} \left(EA \frac{du}{dx} \right) - q = 0\]

Differential equation for axially loaded bar \((3.11) \)

For specified kinematic boundary conditions

Either \(\delta u_0 = 0 \) or \(-EA \frac{du}{dx} + k_0 u_0 = 0 \) \((x=0) \)

Either \(\delta u_L = 0 \) or \(EA \frac{du}{dx} + k_L u_L = 0 \) \((x=L) \) \((3.12) \)

Force boundary conditions with spring ends

Force boundary conditions with free ends

\[-EA \frac{du}{dx} \bigg|_{x=0} = 0, \quad EA \frac{du}{dx} \bigg|_{x=L} = 0\]
Example 4. Derive the equations of equilibrium and boundary conditions for the Euler beam with spring supported ends.

Potential energy functional

\[\Pi = \left[\frac{1}{2} \int_0^L \left(\frac{d^2 w}{dx^2} \right)^2 EI + \frac{1}{2} k_0 w_0^2 + \frac{1}{2} k_L w_L^2 + \frac{1}{2} r_0 \left(\frac{dw}{dx} \right)^2_{x=0} + \frac{1}{2} r_L \left(\frac{dw}{dx} \right)^2_{x=L} \right] - \int_0^L w q dx \]

\[\delta \Pi = \int_0^L \delta \left(\frac{d^2 w}{dx^2} \right) EI \left(\frac{d^2 w}{dx^2} \right) dx - \int_0^L \delta w q dx \]

\[+ k_0 w_0 \delta w_0 + k_L w_L \delta w_L + r_0 \left(\frac{dw}{dx} \right)^2 \delta \left(\frac{dw}{dx} \right)^2_{x=0} + r_L \left(\frac{dw}{dx} \right)^2 \delta \left(\frac{dw}{dx} \right)^2_{x=L} \]
\[
\delta \Pi = \int_0^L \delta w \left[\frac{d^2}{dx^2} \left(EI \frac{d^2 w}{dx^2} \right) - q \right] dx \\
+ \left[\left(-EI \frac{d^2 w}{dx^2} + r_0 \frac{dw}{dx} \right) \delta \left(\frac{dw}{dx} \right) \bigg|_{x=0} + \left(EI \frac{d^2 w}{dx^2} + r_L \frac{dw}{dx} \right) \delta \left(\frac{dw}{dx} \right) \bigg|_{x=L} \right] \\
+ \left[\left(\frac{d}{dx} EI \frac{d^2 w}{dx^2} + k_0 w \right) \delta w_{x=0} + \left(-\frac{d}{dx} EI \frac{d^2 w}{dx^2} + k_L w \right) \delta w_{x=L} \right]
\]

For non-trivial, arbitrary, yet admissible virtual displacements,

Equilibrium \(\delta \Pi = 0 \).

\[
\frac{d^2}{dx^2} \left(EI \frac{d^2 w}{dx^2} \right) - q = 0
\]

Differential equation for the Euler beam

\((3.13) \)

Either \(\delta \left(\frac{dw}{dx} \right)_{x=0} = 0 \) or \(-EI \frac{d^2 w}{dx^2} + r_0 \frac{dw}{dx} = 0 \)

Either \(\delta \left(\frac{dw}{dx} \right)_{x=L} = 0 \) or \(EI \frac{d^2 w}{dx^2} + r_L \frac{dw}{dx} = 0 \)

Either \(\delta w_0 = 0 \) or \(\frac{d}{dx} EI \frac{d^2 w}{dx^2} + k_0 w = 0 \)

Either \(\delta w_L = 0 \) or \(-\frac{d}{dx} EI \frac{d^2 w}{dx^2} + k_L w = 0 \)

Boundary conditions at the ends \(x=0 \) & \(x=L \)
3.5 Constrained media problems
(use of penalty methods)
Elementary beam theory as constrained media problem

Principal assumption in Euler’s simple beam theory (valid for thin beams):
Plane sections normal to the neutral axis before bending remain normal to it even after bending.
This means that

(a) bending rotation is equal to the slope of the neutral axis.
(b) shear deformation γ_{zx} is (assumed) zero.

Euler beam model

Shear flexible beam model

$\theta = \frac{d\theta}{dx}$

$\gamma_{zx} = \theta - \frac{d\theta}{dx}$
Elementary beam theory as constrained media problem (continued)

Euler beam model

The Euler beam has infinite shear rigidity κ

But the practice of using a large shear rigidity κ for thin beams creates a problem called Shear Locking in shear-flexible beam elements.

Equilibrium Equations

$$\delta \Pi = \delta \left[\int_0^L \frac{1}{2} EI \left(\frac{d\theta}{dx} \right)^2 dx - \int_0^L qwdx + \int_0^L \frac{1}{2} \kappa \left(\theta - \frac{dw}{dx} \right)^2 \right] = 0$$

Combining (i) & (ii)

$$\frac{d}{dx} \left(\frac{d \theta}{dx} - \frac{d^2 w}{dx^2} \right) = q \quad \text{i.e.} \quad \frac{d}{dx} \kappa \left(\theta - \frac{dw}{dx} \right) = q \quad \text{...(ii)}$$

Boundary conditions at $x = 0$ & $x = L$

Either $EI \frac{d\theta}{dx} = 0$ or $\delta\theta = 0$

Either $\kappa \left(\theta - \frac{dw}{dx} \right) = 0$ or $\delta w = 0$

As $\kappa \to \infty$ $\theta \to \frac{dw}{dx}$

Equation(iii) reduces to $\left(EI \frac{d^4 w}{dx^4} - q \right) \to 0$
Lecture 2
Variational Principles in Computational Solid Mechanics

Somenath Mukherjee
Scientist, Structural Technologies Division, National Aerospace Laboratories (NAL), Bangalore, Karnataka, India

Gangan Prathap
Director, National Institute of Science and Information Resources (NISCAIR), New Delhi, India
Lecture 2

Chapter 4

Element formulations
using variational principles
Example 1. Determine the deflection curves and bending curvature distributions of a simply supported uniform beam under u.d.l. q using the Rayleigh-Ritz method.

Use the following admissible displacement functions for approximations, satisfying the essential (kinematic) boundary conditions:

$$w(x=0)=0 \quad \& \quad w(x=L)=0$$

(i) $w(x) = a.x(L-x)$

(ii) $w(x) = a.\sin \frac{\pi x}{L}$
\(qL^2 \) \(\frac{12EI}{} \)

\[w(x) = ax(L-x) \quad \Rightarrow \quad \varepsilon = -\frac{d^2w}{dx^2} = 2a \]

\[\Pi = \frac{1}{2} \int_0^L EI \left(\frac{d^2w}{dx^2} \right)^2 dx - \int_0^L q.w.dx = 2a^2 (EIL) - a \frac{qL^3}{6} \]

Equilibrium: \(\delta \Pi = 4a(\delta a)(EIL) - (\delta a). \frac{qL^3}{6} = 0 \)

\[\Rightarrow \quad a = \frac{qL^2}{24EI} \quad w = \frac{qL^2}{24EI} x(L-x) \]

Exact Curvature

Approximate Curvature

Curvature=2a

Areas under the curvature curves are Equal. WHY?

\[A_{exact} = \frac{2L}{3} \times \frac{qL^2}{8EI} = \frac{qL^3}{12EI} \]

\[A_{approx} = L \times \frac{qL^2}{12EI} = \frac{qL^3}{12EI} \]

\[A_{exact} = A_{approx} \]
(ii) \(w(x) = a \sin \frac{\pi x}{L} \) \(\Rightarrow \) \(\varepsilon = -\frac{d^2w}{dx^2} = a \left(\frac{\pi}{L} \right)^2 \sin \frac{\pi x}{L} \)

\[\Pi = \frac{1}{2} \int_0^L EI \left(\frac{d^2w}{dx^2} \right)^2 \, dx - \int_0^L q \cdot w \, dx = a^2 \left(\frac{\pi^4}{4L^4} \right) (EIL) - 2a \frac{qL}{\pi} \]

Equilibrium: \(\delta\Pi = 0 \) \(\Rightarrow \) \(2a(\delta a) \left(\frac{\pi^4}{4L^4} \right) (EIL) - (2\delta a) \frac{qL}{\pi} = 0 \)

\(\Rightarrow \) \(a = \frac{4qL^4}{\pi^5 EI} \) \(w = \frac{4qL^4}{\pi^5 EI} \sin \frac{\pi x}{L} \)

Areas under the curvature curves

- Exact: \(A_{\text{exact}} = 2L \times \frac{qL^2}{8EI} = \frac{qL^3}{12EI} \)
- Approximate: \(A_{\text{approx}} = \left(\frac{4qL^4}{\pi^5 EI} \right) \left(\frac{\pi}{L} \right)^2 \int_0^L \sin \frac{\pi x}{L} \, dx \)

\(A_{\text{approx}} = \frac{qL^3}{12EI} \)
\[\| \epsilon \|^2 = \int_0^L EI \left(-\frac{d^2 w}{dx^2} \right)^2 dx \]
\[\| \epsilon^h \|^2 = \int_0^L EI \left(-\frac{d^2 w^h}{dx^2} \right)^2 dx \]

<table>
<thead>
<tr>
<th>Displacement function and curvature (strain) (superscript (h) signifies approximated function)</th>
<th>Deflection at beam center (x=L/2)</th>
<th>Error of the Energy</th>
<th>Energy of the Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w^h(x) = a.x(L - x)) [\epsilon^h = 2a]</td>
<td>(0.01041) (\frac{qL^4}{EI})</td>
<td>(\frac{q^2L^5}{(1440)EI})</td>
<td>(\frac{q^2L^5}{(1440)EI})</td>
</tr>
<tr>
<td>(w^h(x) = a.\sin(\pi x / L)) [\epsilon^h = a.(\pi / L)^2 \sin(\pi x / L)]</td>
<td>(0.01307) (\frac{qL^4}{EI}) [\left(\frac{1}{240} - \frac{4}{\pi^6} \right) \frac{q^2L^5}{EI}]</td>
<td>(\left(\frac{1}{240} - \frac{4}{\pi^6} \right) \frac{q^2L^5}{EI})</td>
<td></td>
</tr>
</tbody>
</table>

Exact

\[w(x) = \left(\frac{q}{24EI} \right) \{x(L^3 - 2x^2L + x^3)\} \]
\[\epsilon = \frac{q}{2EI} x(L - x) \]

(0.01302) \(\frac{qL^4}{EI} \)

0

0

6
4.2 Element formulations using the principle of minimum potential energy

4.2.1 The bar element (2 nodes, 2 DOF)

Displacement function (C₀ continuity)

\[u^h = \sum_{i=1}^{2} N_i(\xi)u_i = \begin{bmatrix} N_1 & N_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = [N] \{\delta^e\} \]

\[N_1(\xi) = \frac{1-\xi}{2} \quad N_2(\xi) = \frac{1+\xi}{2} \]

\[\xi = \frac{2x}{L^e} - 1 \]

Strain

\[\varepsilon^h = \frac{u_2 - u_1}{L^e} = \begin{bmatrix} -\frac{1}{L^e} & \frac{1}{L^e} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = [B] \{\delta^e\} \]

\[[N]: \text{Shape function matrix} \]

\[[B]: \text{Strain-displacement matrix} \]
The bar element

Stress

\[\sigma^h = E A^e \varepsilon^h = [D][B]\{\delta^e\} \quad [D] = E A^e \]

Strain Energy of element

\[U^e = \frac{1}{2} \int_{x=0}^{x=L} \{\varepsilon^h\}^T \{\sigma^h\} dx = \{\delta^e\}^T \left[\frac{1}{2} \int_{\xi=-1}^{\xi=1} [B]^T [D][B] \frac{L}{2} d\xi \right] \{\delta^e\} = \frac{1}{2} \{\delta^e\}^T [K^e] \{\delta^e\} \]

where

\[[K^e] = \int_{\xi=-1}^{\xi=1} [B]^T [D][B] \frac{L}{2} d\xi = \frac{E A^e}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \] (4.3)

Work done by external loading \(q(x) \)

\[W^e = \int_{x=0}^{L} \{u^h\}^T q(x).dx = \{\delta^e\}^T \int_{\xi=-1}^{1} [N]^T q(\xi) \frac{L}{2} d\xi = \{\delta^e\}^T \{F^e\} \]

where

\[\{F^e\} = \int_{\xi=-1}^{1} [N]^T q(\xi) \frac{L}{2} d\xi = \begin{bmatrix} F^e_1 \\ F^e_2 \end{bmatrix}, \quad F^e_i = \int_{\xi=-1}^{1} N_i(\xi)q(\xi) \frac{L}{2} d\xi \] (4.4)
The bar element

Potential Energy of element is

$$\Pi^e = U^e - W^e$$

$$= \frac{1}{2} \{ \delta^e \}^T [K^e] \{ \delta^e \} - \{ \delta^e \}^T \{ F^e \} - \{ \delta^e \}^T \{ R^{h,e} \}$$

Equilibrium of element demands that

$$\delta \Pi^e = 0$$

$$0 = \left[\delta \{ \delta^e \}^T \right] [K^e] \{ \delta^e \} - \left[\delta \{ \delta^e \}^T \right] \{ F^e \} - \left[\delta \{ \delta^e \}^T \right] \{ R^{h,e} \}$$

(4.5)

Element Stiffness

$$[K^e] = \int_{\xi=-1}^{\xi=1} [B]^T [D][B] \frac{L}{2} d\xi = \frac{EA^e}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Generalized force vector

$$F_i^e = \int_{\xi=-1}^{\xi=1} N_i(\xi) q(\xi) \frac{L}{2} d\xi$$
4.2.2 The Euler beam element (2 nodes, 4 DOF)

Displacement function \((C^1 \text{ continuity}) \)

\[
\begin{align*}
\xi &= \frac{2x}{L^e} - 1 \\
N_i(\xi) \cdot \delta_i &= \begin{bmatrix} N_1 & N_2 & N_3 & N_4 \end{bmatrix} \begin{bmatrix} w_1 \\ \theta_1 \\ w_2 \\ \theta_2 \end{bmatrix} = [N]\{\delta^e\} \quad (4.6)
\end{align*}
\]

\[
N_1 = \frac{1}{4} \left\{2 + \xi(\xi^2 - 3)\right\} \quad N_2 = \frac{L^e}{8} (\xi + 1)(\xi - 1)^2 \quad N_3 = \frac{1}{4} \left\{2 - \xi(\xi^2 - 3)\right\} \quad N_2 = \frac{L^e}{8} (\xi + 1)^2(\xi - 1)
\]

\([N]\): Shape function matrix
The Euler beam element

Strain and stress resultant vectors

\[\varepsilon^h = \frac{d^2 w^h}{dx^2} = \frac{4}{(L^e)^2} \frac{d^2 w^h}{d \xi^2} = \begin{bmatrix} 6 \xi & L^e (3 \xi - 1) & -6 \xi & L^e (3 \xi + 1) \end{bmatrix} \{ \delta^e \} = [B] \{ \delta^e \} \]

\[\sigma^h = M^h = EI^e \varepsilon^h = [D][B]\{ \delta^e \} \quad [D] = EI^e \quad (4.7) \]

Strain Energy of element

\[U^e = \frac{1}{2} \int_{x=0}^{x=L} \left\{ \varepsilon^h \right\}^T \left\{ \sigma^h \right\} dx = \{ \delta^e \}^T \left[\frac{1}{2} \int_{\xi=-1}^{\xi=1} [B]^T [D][B] \frac{L}{2} d \xi \right] \{ \delta^e \} = \frac{1}{2} \{ \delta^e \}^T [K^e] \{ \delta^e \} \]

where

\[[K^e] = \int_{\xi=-1}^{\xi=1} [B]^T [D][B] \frac{L}{2} d \xi \]

\[[K^e] = \begin{bmatrix}
12(EI^e / L^e^3) & 6(EI^e / L^e^2) & -12(EI^e / L^e^3) & 6(EI^e / L^e^2) \\
6(EI^e / L^e^2) & 4(EI^e / L^e) & -6(EI^e / L^e^2) & 2(EI^e / L^e) \\
-12(EI^e / L^e^3) & -6(EI^e / L^e^2) & 12(EI^e / L^e^3) & -6(EI^e / L^e^2) \\
6(EI^e / L^e^2) & 2(EI^e / L^e) & -6(EI^e / L^e^2) & 4(EI^e / L^e) \\
\end{bmatrix} \quad (4.8) \]
The Euler beam element

Work done by external loading \(q(x) \)

\[
W^e = \int_{x=0}^{L} \left\{ w^h \right\}^T q(x) \, dx = \left\{ \delta^e \right\}^T \int_{\xi=-1}^{1} \left[N \right]^T q(\xi) \cdot \frac{L}{2} d\xi = \left\{ \delta^e \right\}^T \left\{ F^e \right\}
\]

where \(\left\{ F^e \right\} = \int_{\xi=-1}^{1} \left[N \right]^T q(\xi) \cdot \frac{L}{2} d\xi = \begin{bmatrix} F_1 \\ M_1 \\ F_2 \\ M_2 \end{bmatrix} \) \((4.9) \)

Potential Energy of element is

\[
\Pi^e = U^e - W^e
= \frac{1}{2} \left\{ \delta^e \right\}^T \left[K^e \right] \left\{ \delta^e \right\} - \left\{ \delta^e \right\}^T \left\{ F^e \right\} - \left\{ \delta^e \right\}^T \left\{ R^{h,e} \right\}
\]

Equilibrium of element demands that

\[
\delta \Pi^e = 0
\]

Reaction vector

\[
\left[K^e \right] \left\{ \delta^e \right\} = \left\{ F^e \right\} + \left\{ R^{h,e} \right\} \quad (4.10)
\]
4.3 The general methods of element formulation

The Rayleigh Ritz Method

Steps
1. Use a displacement interpolation
\[\{u^h\} = [N]\{\delta^e\} \]

2. Develop strain and stress resultants.
\[\varepsilon^h = [B]\{\delta^e\} \]
\[\sigma^h = [D]\varepsilon^h = [D][B]\{\delta^e\} \]

3. Generate potential function
\[\Pi^e = U^e - W^e \]
\[= \frac{1}{2} \{\delta^e\}^T[K^e]\{\delta^e\} - \{\delta^e\}^T\{F^e\} - \{\delta^e\}^T[R_h^e] \]

4. Use PMPE
\[\delta\Pi^e = 0 \]

\[[K^e] = \int [B]^T[D][B]d\xi = \int [B]^T[D][B]\det[J]d\xi \]

\[\{F^e\} = \int [N]^Tq(x)dx = \int [N]^Tq(\xi)\det[J]d\xi \]

The Galerkin Method

Differential eqn.
\[\mathcal{L}(u) = q \]

Virtual work
\[\int [N]^T[\mathcal{L}\{u^h\} - q]d\Omega = 0 \]
\[\Omega \]

\[[K^e]\{\delta^e\} = \{F^e\} + \{R_h^e\} \]
\[(4.11) \]
4.4 Some specimens from the Lagrangian family of C^0 elements

Displacement approximation in an element through Lagrangian interpolation

$$u^h = N_1(x)u_1 + N_2(x)u_2 + \ldots + N_n(x)u_n = \sum_{i=1}^{n} N_i(x)u_i = [N]\{\delta^e\}$$

$$N_1(x) = \frac{(x_2 - x)(x_3 - x)\ldots(x_n - x)}{(x_2 - x_1)(x_3 - x_1)\ldots(x_n - x_1)} = \frac{\prod_{j=2}^{n} (x_j - x)}{\prod_{j=2}^{n} (x_j - x_1)}$$

$$N_i(x) = \frac{\prod_{j=1, j \neq i}^{n} (x_j - x)}{\prod_{j=1, j \neq i}^{n} (x_j - x_i)}$$

$$\sum_{i=1}^{n} N_i(\xi) = 1 \quad (4.13)$$

Such elements are of C^0 continuity because across the element boundary, only the function interpolated is continuous, but its derivatives are not continuous.

$$\sum_{i=1}^{n} N_i(\xi) = 1 \quad \text{Ensures rigid body displacement of element}$$
(a) For the two noded bar element, a linear Lagrangian is used for displacement, hence a constant strain over the element results:

Displacement function

\[u^h = \sum_{i=1}^{2} N_i(\xi) u_i = \begin{bmatrix} N_1 & N_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = [N] \{\delta^e\} \]

\[\sum_{i=1}^{2} N_i(\xi) = 1 \]

[\([N] \): Shape function matrix] \hspace{1cm} (4.14)

Strain

\[\varepsilon^h = \frac{u_2 - u_1}{L^e} = \begin{bmatrix} -\frac{1}{L^e} & \frac{1}{L^e} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = [B] \{\delta^e\} \]

[\([B] \): Strain-displacement matrix] \hspace{1cm} (4.15)
(b) For the three noded bar element, a quadratic Lagrangian is used for displacement, hence a linear strain over the element results:

\[\xi = \frac{2x}{L^e} - 1 \]

Element Stiffness Matrix

\[
K^e = \frac{1}{2} \int_{-1}^{1} [B]^T E A^e [B] \left(\frac{d\xi}{dx} \right) d\xi = \frac{E A^e}{3 L^e} \begin{bmatrix}
7 & 1 & -8 \\
1 & 7 & -8 \\
-8 & -8 & 16
\end{bmatrix}
\]

Element force vector

\[
\{ F^e \text{ Applied} \} = \int_{-1}^{1} [N]^T q \left(\frac{d\xi}{dx} \right) d\xi = q L^e \begin{bmatrix}
1/6 \\
1/6 \\
2/3
\end{bmatrix}
\]

q=force p.u.length

\[
\sum_{i=1}^{3} N_i(\xi) = 1
\]

\[
\begin{align*}
\mathbf{u}^h &= \sum_{i=1}^{3} N_i(\xi) \mathbf{u}_i = \begin{bmatrix} N_1 & N_2 & N_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = [N] \{ \mathbf{\delta}^e \} \\
N_1 &= -\frac{1}{2} \xi(1-\xi), \quad N_2 = \frac{1}{2} \xi(1+\xi), \quad N_3 = (1-\xi^2) \\
\{ \mathbf{\delta}^e \} &= \begin{bmatrix}
\left(\frac{2}{L^e} \right) \left(-\frac{1-2\xi}{2} \right), \\
\left(\frac{2}{L^e} \right) \left(\frac{1+2\xi}{2} \right), \\
\left(\frac{2}{L^e} \right)(-2\xi)
\end{bmatrix} \{ \mathbf{\delta}^e \}
\end{align*}
\]
Example 2. A robotic arm is rotating at a constant angular velocity $\omega = 30 \text{ rad/sec}$. Determine the axial stress distribution from centrifugal forces (using two quadratic elements).

Assembly of stiffness matrices

$$[K_G] = \sum_{e=1}^{2} [K^e] = \frac{10^7 \times 0.6}{3 \times 21} \begin{bmatrix} 7 & -8 & 1 & 0 & 0 \\ -8 & 16 & -8 & 0 & 0 \\ 1 & -8 & 14 & -8 & 1 \\ 0 & 0 & -8 & 16 & -8 \\ 0 & 0 & 1 & -8 & 7 \end{bmatrix}$$

Element stiffness matrices

$$[K^1] = \frac{10^7 \times 0.6}{3 \times 21} \begin{bmatrix} 7 & 1 & -8 \\ 1 & 7 & -8 \\ -8 & -8 & 16 \end{bmatrix}$$

$$[K^2] = \frac{10^7 \times 0.6}{3 \times 21} \begin{bmatrix} 7 & 1 & -8 \\ 1 & 7 & -8 \\ -8 & -8 & 16 \end{bmatrix}$$

Element force vectors

$$\{F^e_{\text{applied}}\} = \int [N]^T q_s \left(\frac{dx}{d\xi} \right) d\xi$$

$$\frac{dx}{d\xi} = \frac{L^e}{2}$$

$$\xi = \frac{2x}{L^e} - 1$$
Computation of element force vectors with averaged body force

\[f^e_{\text{Average}} = \frac{\rho(x^e_{\text{mean}}) \omega^2}{g} \quad \text{lb/in}^3 \]

\[\left(f^{(1)}_{\text{Average}} \right) = \frac{0.2836 \times (10.5) \times 30^2}{32.2 \times 12} = 6.94 \]

\[\{ F^1_{\text{applied}} \} = \left(f^{(1)}_{\text{Average}} \right) A^e L^e \begin{cases} 1/6 \quad (1) \\ 2/3 \quad (3) \end{cases} \]

\[\left(f^{(2)}_{\text{Average}} \right) = \frac{0.2836 \times (31.5) \times 30^2}{32.2 \times 12} = 20.81 \]

\[\{ F^2_{\text{applied}} \} = \left(f^{(2)}_{\text{Average}} \right) A^e L^e \begin{cases} 1/6 \quad (3) \\ 2/3 \quad (4) \end{cases} \]

The global (applied) force vector after force assembly

\[\{ F^G_{\text{Applied}} \} = \begin{bmatrix} 14.57 & 58.26 & 58.26 & 174.79 & 43.70 \end{bmatrix}^T \]
Solving for displacements \((u_1=0) \). Eliminating \(u_1 \)

\[
\begin{bmatrix}
16 & -8 & 0 & 0 \\
-8 & 14 & -8 & 1 \\
0 & -8 & 16 & -8 \\
0 & 1 & -8 & 7 \\
\end{bmatrix}
\begin{bmatrix}
u_2 \\
u_3 \\
u_4 \\
u_5 \\
\end{bmatrix}
=
\begin{bmatrix}
58.26 \\
58.26 \\
174.79 \\
43.7 \\
\end{bmatrix}
\]

\(\{\delta^G\} = 10^{-3} \times \begin{bmatrix} 0 & 0.5735 & 1.0706 & 1.4147 & 1.5294 \end{bmatrix}^T \)

Element strains and stresses

\(\varepsilon^h = [B] \{\delta^e\} = \begin{bmatrix} \left(\frac{2}{L^e} \right) & -\frac{1-2\xi}{2} & \left(\frac{2}{L^e} \right) & \frac{1+2\xi}{2} & \left(\frac{2}{L^e} \right) \end{bmatrix} \{\delta^e\} \)

\(\sigma^h = E\varepsilon^h = 10^7 \times \begin{bmatrix} \left(\frac{2}{L^e} \right) & -\frac{1-2\xi}{2} & \left(\frac{2}{L^e} \right) & \frac{1+2\xi}{2} & \left(\frac{2}{L^e} \right) \end{bmatrix} \{\delta^e\} \)

\[
\text{Exact} \quad \sigma = \frac{\rho \omega^2 L^2}{2g} \left\{ 1 - \left(\frac{x}{L} \right)^2 \right\}
\]

Question

Why does the stress obtained from the present FE solution does not coincide with the best-fit?
Question

Why does the stress obtained from the present solution does not coincide with the best-fit?

From the differential equation

\[- \frac{d}{dx} \left(EA \frac{du}{dx} \right) = q(x) \]

Exact stress (quadratic) is

\[
\sigma = E \frac{du}{dx} = - \frac{1}{A^e} \int (q) dx = - \frac{1}{A^e} \int \left(fA^e \right) dx
\]

\[
\text{Exact} \quad \sigma = \frac{\rho \omega^2 L^2}{2g} \left\{ 1 - \left(\frac{x}{L} \right)^2 \right\}
\]

This implies that the true body force \(f \) should be linearly varying (and not constant average) within the element.

With the consistent force vector, we can get the FE stress as the linear best-fit to the analytical stress in each element.

This is the consistent force vector for each element.

\[
\{ F^e_{\text{applied}} \} = \int_0^{L^e} [N]^T q(x) dx = \int_{-1}^{1} [N]^T q(\xi) \left(\frac{L^e}{2} \right) d\xi
\]

\[
q(\xi) = \frac{\rho \omega^2 x(\xi)}{g} A^e = \frac{\rho \omega^2 [x^e_L + L^e (\xi + 1)/2]}{g} A^e
\]
Question
Why does the stress obtained from the present solution does not coincide with the best-fit?

From the differential equation
\[- \frac{d}{dx} \left(EA \frac{du}{dx} \right) = q(x) \]

Exact stress (quadratic) is
\[\sigma = E \frac{du}{dx} = - \frac{1}{A^e} \int q(x) dx = - \frac{1}{A^e} \int (fA^e) dx \]

Exact
\[\sigma = \frac{\rho \omega^2 L^2}{2g} \left\{ 1 - \left(\frac{x}{L} \right)^2 \right\} \]

This implies that the true body force \(f \) should be linearly varying (and not constant average) within the element.

This is the consistent force vector for each element.

\[
\{ F^e_{applied} \} = \int_0^{L^e} [N]^T q(x) dx = \int_{-1}^{1} [N]^T q(\xi) \left(\frac{L^e}{2} \right) d\xi
\]

\[
q(\xi) = \frac{\rho \omega^2 L^e}{g} A^e = \frac{\rho \omega^2 [x^e L + L^e (\xi + 1) / 2]}{g} A^e
\]

Centrifugal body force, \(f \)

Axial Stress

With the consistent force vector, we can get the FE stress as the linear best-fit to the analytical stress in each element.

Axial Stress

Exact
FE (averaged body force)
FE (consistent force with actual linearly varying body force)
4.5 Some specimens from the Isoparametric family of elements

Displacement approximation and Geometry of element described by the same set of Lagrangian interpolation functions

\[
\{u^h\} = [N]\{\delta^e\} \\
\{x\} = [N]\{x^e\}
\]

(4.18)

Advantages:
Curved/inclined outlines/surfaces of elements can be suitably modeled.

(a) The aforementioned two-noded bar element is a linear isoparametric element.

\[
u^h = \sum_{i=1}^{2} N_i(\xi)u_i = [N_1 \quad N_2]\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = [N]\{\delta^e\}
\]

\[
x = \sum_{i=1}^{2} N_i(\xi)x_i = [N_1 \quad N_2]\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = [N]\{x^e\}
\]
(b) The three-noded (quadratic) bar element with quadratic geometry description

\[u^h = \sum_{i=1}^{3} N_i(\xi) u_i = \begin{bmatrix} N_1 & N_2 & N_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = [N] \{\delta^e\} \]

\[N_1 = -\frac{1}{2} \xi (1 - \xi), \quad N_2 = \frac{1}{2} \xi (1 + \xi), \quad N_3 = (1 - \xi^2) \]

\[x = \sum_{i=1}^{3} N_i(\xi) x_i = \begin{bmatrix} N_1 & N_2 & N_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = [N] \{x^e\} \]

\[\varepsilon^h = \frac{d u^h}{d x} = \frac{d \xi}{d x} \frac{d u^h}{d \xi} = \frac{(d u^h / d \xi)}{d x / d \xi} = [B] \{\delta^e\} \]

(4.19)
(c) The four-noded (linear) quadrilateral element for plane stress problem

Shape functions

\[
N_1 = \frac{1}{4}(1 - \xi)(1 - \eta), \quad N_2 = \frac{1}{4}(1 + \xi)(1 - \eta) \\
N_3 = \frac{1}{4}(1 + \xi)(1 + \eta), \quad N_4 = \frac{1}{4}(1 - \xi)(1 + \eta)
\]

Displacement

\[
\begin{pmatrix} u^h \\ v^h \end{pmatrix} = \begin{pmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 \end{pmatrix} \begin{pmatrix} \delta^e_1 \\ \delta^e_2 \\ \delta^e_3 \\ \delta^e_4 \end{pmatrix} = [N] \{\delta^e\}
\]

Geometry

\[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{4} N_i x_i \\ \sum_{i=1}^{4} N_i y_i \end{pmatrix} = [N] \{X^e\}
\]

(4.20) (4.21)
(c) The four-noded (linear) quadrilateral element for plane stress problem

Element stress

\[
\{\sigma^h\} = \begin{pmatrix}
\sigma_x^h \\
\sigma_y^h \\
\tau_{xy}^h
\end{pmatrix} = \frac{E}{(1-\mu^2)} \begin{bmatrix}
1 & \mu & 0 \\
\mu & 1 & 0 \\
0 & 0 & (1-\mu)/2
\end{bmatrix} \begin{pmatrix}
\varepsilon_x^h \\
\varepsilon_y^h \\
\gamma_{xy}^h
\end{pmatrix} = [D][B]\{\delta^e\}
\]

Element strain

\[
\{\varepsilon^h\} = \begin{pmatrix}
\varepsilon_x^h \\
\varepsilon_y^h \\
\gamma_{xy}^h
\end{pmatrix} = \begin{pmatrix}
\frac{\partial u^h}{\partial x} \\
\frac{\partial v^h}{\partial y} \\
\frac{\partial u^h}{\partial y} + \frac{\partial v^h}{\partial x}
\end{pmatrix} = \begin{bmatrix}
\partial N_1/\partial x & 0 & \partial N_2/\partial x & 0 & \partial N_3/\partial x & 0 & \partial N_4/\partial x & 0 \\
0 & \partial N_1/\partial y & 0 & \partial N_2/\partial y & 0 & \partial N_3/\partial y & 0 & \partial N_4/\partial y \\
\partial N_1/\partial y & \partial N_1/\partial x & \partial N_2/\partial y & \partial N_2/\partial x & \partial N_3/\partial y & \partial N_3/\partial x & \partial N_4/\partial y & \partial N_4/\partial x
\end{bmatrix} \begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4
\end{bmatrix} = [B]\{\delta^e\}
\]

Jacobian

\[
[J] = \frac{\partial (x, y)}{\partial (\xi, \eta)} = \begin{pmatrix}
\partial x/\partial \xi & \partial y/\partial \xi \\
\partial x/\partial \eta & \partial y/\partial \eta
\end{pmatrix} = \begin{bmatrix}
\sum_{i=1}^4 (\partial N_i/\partial \xi)x_i & \sum_{i=1}^4 (\partial N_i/\partial \xi)y_i \\
\sum_{i=1}^4 (\partial N_i/\partial \eta)x_i & \sum_{i=1}^4 (\partial N_i/\partial \eta)y_i
\end{bmatrix}
\]

\[(4.22) \]

\[(4.23) \]
(c) The four-noded (linear) quadrilateral element for plane stress problem

\[
\begin{align*}
\frac{\partial N_i}{\partial x} & = [J]^{-1} \begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix} \\
\frac{\partial N_i}{\partial y} & = [J]^{-1} \begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix}
\end{align*}
\]

Element stiffness matrix:

\[
[K^e] = \int_1 \int_1 [B]^T [D][B] t \, dx \, dy = \int_{-1}^{1} \int_{-1}^{1} [B]^T [D][B] t \det{[J]} \, d\xi \, d\eta
\]

\[t = \text{element thickness}\]
Example 3. Plane stress analysis of a plate with a hole using quad4 elements
4.6 Numerical Integration by Gauss Quadrature

If \(f(\xi) \) is a polynomial of degree \((2n-1)\) or less, then it is exactly integrated within the domain \(-1 \leq \xi \leq 1\) by the n-point Gaussian quadrature rule.

\[
f(\xi) = p_{2n}(\xi) = a_1 + a_2\xi + a_3\xi^3 \ldots + a_{2n}\xi^{2n-1} \quad -1 \leq \xi \leq 1
\]

\[
\int_{-1}^{1} f(\xi) \, d\xi = \sum_{i=1}^{n} w_i f(\xi_i)
\]

(4.25)

<table>
<thead>
<tr>
<th>Number of points, (n)</th>
<th>Location, (\xi_i)</th>
<th>Weights, (w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>(\pm 1/\sqrt{3} = \pm 0.5773502692)</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>(\pm 0.7745966692)</td>
<td>0.5555555556</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.8888888889</td>
</tr>
<tr>
<td>4</td>
<td>(\pm 0.8611363116)</td>
<td>0.3478548451</td>
</tr>
<tr>
<td></td>
<td>(\pm 0.3399810436)</td>
<td>0.6521451549</td>
</tr>
<tr>
<td>5</td>
<td>(\pm 0.9061798459)</td>
<td>0.2369268851</td>
</tr>
<tr>
<td></td>
<td>(\pm 0.5384693101)</td>
<td>0.4786286705</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.5688888889</td>
</tr>
<tr>
<td>6</td>
<td>(\pm 0.9324695142)</td>
<td>0.1713244924</td>
</tr>
<tr>
<td></td>
<td>(\pm 0.6612093865)</td>
<td>0.3607615730</td>
</tr>
<tr>
<td></td>
<td>(\pm 0.2386191861)</td>
<td>0.4679139346</td>
</tr>
</tbody>
</table>