Some Remarks on the Solution of the Lifting Line Equation

Rajendra K. Bera*
National Aeronautical Laboratory, Bangalore, India

Introduction

So much has been said about Prandtl's lifting line equation that it seems futile to elaborate on it further. However, the author feels that a few salient features of this equation have not been remarked upon earlier. The equation is

$$\Gamma(y) = \pi UC(y)(\alpha(y) - \epsilon(y))$$

(1)

where

$$\epsilon(y) = \frac{1}{4\pi U} \int_{-\infty}^{\infty} \frac{d\eta}{(y-\eta)}$$

(2)

and

$$\Gamma(s) = \Gamma(-s) = 0$$

(3)

Here \(\Gamma \) is the local circulation, \(\alpha \) is the local geometric angle of attack measured from the zero lift line, \(C \) the local chord, \(\epsilon \) the local downwash induced by the trailing vortices, \(U \) the freestream velocity, \(s \) the wing semispan and \(y \) the spanwise coordinate.

Equation (1) is usually solved using a sine series for \(\Gamma \) in the form

$$\Gamma(\theta) = \sum_{n=1}^{\infty} A_n \Gamma_n(\theta) = 2\pi U \sum_{n=1}^{\infty} A_n \sin n\theta$$

(4)

in a collocation method, and \(\theta = \cos^{-1}(y/s) \).

Since \(\Gamma \) and \(\alpha \) are related by a linear operator, it may be shown that

$$\alpha(\theta) = \sum_{n=1}^{\infty} A_n \alpha_n(\theta) = \frac{2\pi}{\pi UC(y)} \sum_{n=1}^{\infty} A_n \sin n\theta + \epsilon(\theta)$$

(5)

and

$$\epsilon(\theta) = \sum_{n=1}^{\infty} A_n \epsilon_n(\theta) = \frac{1}{2} \sum_{n=1}^{\infty} A_n \sin n\theta / \sin \theta$$

(6)

The lift and drag coefficients are, respectively,

$$C_L = \pi AR A_{\alpha}/2$$

(7)

$$C_D = \pi AR \sum_{n=1}^{\infty} A_n^2 / 4$$

(8)

where the aspect ratio \(AR = 4\pi^2 / S \), and \(S \) is the wing area.

We note that \(C_D \) contains only the square of the unknown constants \(A_n \). In other words, the loadings \((\Gamma_n, \alpha_n) \) are orthogonal in the sense used by Graham. Orthogonality is usually associated with simplicity, and this is reflected in Eqs. (7) and (8).

Let us assume that a loading \((\Gamma, \alpha) \) is expressible by a finite number of terms \(m \) of Eqs. (4) and (5) to the desired accuracy. Then from the orthogonality of the loadings it can be easily shown that

$$\int_{-\infty}^{\infty} \Gamma(y)\epsilon(y)dy = \int_{-\infty}^{\infty} \epsilon(y)\Gamma(y)dy$$

$$= A_{\alpha} \int_{-\infty}^{\infty} \Gamma(y)\alpha(y)dy$$

$$= \frac{\pi}{2} \sum_{n=1}^{\infty} A_n^2$$

(9)

for \(n = 1, \ldots, m \).

Hence if the circulation distribution is given, the unknown constants may be obtained from

$$A_{\alpha} = 2\int_{-\infty}^{\infty} \Gamma(y)\epsilon(y)dy / (\pi \sum_{n=1}^{m} A_n^2)$$

(10)

to yield \(\alpha(y) \) from Eqs. (5) and (6). If the downwash distribution \(\epsilon(y) \) is given, the constants may be obtained from

$$A_{\epsilon} = 2\int_{-\infty}^{\infty} \epsilon(y)\Gamma(y)dy / (\pi \sum_{n=1}^{m} A_n^2)$$

(11)

to yield \(\Gamma(y) \) from Eq. (4). However, more frequently the wing geometry is given in which case \(\alpha(y) \) is specified. Using Eq. (5) to substitute for \(\Gamma(y) \) in Eq. (11) results in \(m \) linear simultaneous equations

$$A_{\epsilon} = \frac{\pi}{2} \sum_{n=1}^{m} A_n^2 + \int_{-\infty}^{\infty} \alpha(y)\epsilon(y)dy$$

$$= \int_{-\infty}^{\infty} \alpha(y)\epsilon(y)dy$$

(12)

which may be solved for the \(A_n \). Results of Eqs. (10) and (11) are important since they allow the \(A_n \) to be evaluated explicitly. Equation (12) clearly shows that for elliptic planforms, i.e. \(C(\theta) = \sin \theta \), the \(A_n \) can be obtained explicitly for any angle of attack distribution. In this form it is a generalization of Filotas' results. It is further interesting to note that Eq. (12) is the same as would be obtained by an application of the Galerkin method to Eq. (1). The present derivation shows that the Galerkin approach is a very natural one and is the reason for its success in Ref. 4.

The advantage of using Eqs. (10-12) is that the solution does not depend only on the characteristics of the wing at a small number of isolated points as in a collocation procedure, but gives an approximate solution along the entire span. Hence discontinuities, flap deflections, etc., may be accounted for.

An Example—Rectangular Wing

Application of Eq. (12) to a wing of constant chord \(C \), and constant incidence \(\alpha \), gives

$$\frac{\pi}{2} \sum_{n=1}^{\infty} A_n^2 \left(\frac{\pi C}{n} \right)^2 \left(\frac{n^2 \pi^2}{n^2 \pi^2 - m^2} \right) + 1 = \pi \alpha ; \quad n = 1$$

$$= 0 ; \quad n \neq 1$$

(13)

for \(n = 1, \ldots, m \).
where \(\Sigma \) denotes summation over only those terms for which \((n + r)\) is even. A one term approximation for \(\Gamma \) yields

\[
A_1 = \frac{\pi a}{\pi/2 + 16\pi/3}\quad (14)
\]

A two term approximation shows

\[
A_1 = \frac{\pi a}{\pi/2 + 16\pi/3} - \left(\frac{16\pi}{3\pi/2} \right) - \left(\frac{144\pi}{2\pi / 2 - 35\pi/2} \right)
\]

\[
A_2 = 0
\]

\[
A_3 = \frac{16\pi a}{15\pi/2} \left(\frac{\pi/2 + 16\pi/3}{\pi/2 - 35\pi/2} - \left(\frac{16\pi}{2\pi/2 - 35\pi/2} \right) \right)
\]

The computation effort required in solving Eq. (13) is less compared to a collocation method where trigonometric functions must be evaluated.

Conclusions

The method outlined in this note is valid for any set of loadings \((\Gamma_n, a_n)\) which are orthogonal in Graham's sense. It may be used for non-orthogonal loadings if they are first converted to an orthogonal set as suggested by Graham.²

References