at the occurring half of the general that the leading edge of the wings' leading edge, as in Fig. 7. The burst incidence angle of the wings presents a general correlation for the estimation of afterbody drag with hot jet exhaust.

Fig. 6 Vortex breakdown position on sharp-edged delta wings.

Fig. 7 Predicted wing-rock boundary for slender delta wings.

Conclusions

The information that the vehicle designer needs early in the design cycle is 1) the angle-of-attack/leading-edge-sweep angle in which slender wing rock will occur and 2) the maximum wing-rock amplitude. Figure 7 provides the (or, h)_max for starting wing rock. To determine the maximum possible oscillation amplitude, one needs to repeat the computations, producing Fig. 5 for apex half-angles B_a different from 10 deg.

References

Correlation for the Estimation of Afterbody Drag with Hot Jet Exhaust

N. B. Mathur*
National Aerospace Laboratories,
Bangalore 560 017, India

MODERN turbojet and turbofan engines of combat aircraft operating over a wide range of power settings experience jet exhaust temperature typically varying from 1000–2000 K, whereas much of afterbody-nozzle testing is conducted with a cold jet near 300 K. Thus, there remains a problem to determine the extent to which jet total temperature and associated gas constants affects the afterbody drag of a combat aircraft under various operating conditions of its nozzle during the flight operation. Physical modeling of jet freestream interactions with temperature effects is quite difficult; and calculations of afterbody drag with hot jet exhaust are computationally intensive. Efforts made earlier for the estimation of afterbody drag with hot jet exhaust.

Received Aug. 17, 1997; revision received June 6, 1998; accepted for publication June 13, 1998. Copyright © 1998 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. *Scientist, Experimental Aerodynamics Division. Member AIAA.
Table 1 Afterbody tests with hot jet exhaust: AEDC and NASA experiments

<table>
<thead>
<tr>
<th>Experiments</th>
<th>AEDC</th>
<th>NASA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind tunnel</td>
<td>16 ft, PWT</td>
<td>Langley, 16 ft</td>
</tr>
<tr>
<td>Maximum diameter of afterbody model</td>
<td>250 mm</td>
<td>152 mm</td>
</tr>
<tr>
<td>d_1/d_a</td>
<td>0.42</td>
<td>0.51</td>
</tr>
<tr>
<td>d_2/d_a</td>
<td>0.40</td>
<td>0.50</td>
</tr>
<tr>
<td>Boat-tail angle (β)</td>
<td>10, 15, and 25 deg</td>
<td>10 and 20 deg</td>
</tr>
<tr>
<td>Freestream Mach number (M_∞)</td>
<td>0.6–1.5</td>
<td>0.6–1.2</td>
</tr>
<tr>
<td>Reynolds number ($Re_{\infty} \times 10^{14}$)</td>
<td>4–16</td>
<td>10–14</td>
</tr>
<tr>
<td>Nozzle</td>
<td>Convergent</td>
<td>Convergent–divergent</td>
</tr>
<tr>
<td>Jet Mach number (M_j)</td>
<td>$M_j = 1$</td>
<td>$M_j = 1$ and 2</td>
</tr>
<tr>
<td>Hot jet generation</td>
<td>Ethylene–air combus-</td>
<td>Decomposition of hydro-</td>
</tr>
<tr>
<td></td>
<td>tor housed inside</td>
<td>gen peroxide inside</td>
</tr>
<tr>
<td></td>
<td>model</td>
<td>model</td>
</tr>
<tr>
<td>Jet pressure ratios (P_{n}/P_{s})</td>
<td>Jet-off to 8.0</td>
<td>Jet-off to 20.0</td>
</tr>
<tr>
<td>Jet plume temperature (T_{n} K)</td>
<td>300, 1165, 1580</td>
<td>300, 646, 1013</td>
</tr>
<tr>
<td>Specific heat ratio of jet exhaust (γ_j)</td>
<td>1.40, 1.30, 1.28</td>
<td>1.40, 1.30, 1.26</td>
</tr>
</tbody>
</table>

Notes: d_1, d_2, and d_a are forebody (maximum), base, and jet diameters, respectively. Re_∞ is Reynolds number/meter. P_n and P_s are stagnation pressure of jet and freestream static pressure, respectively.

Present Results
Using Correlation

\[
\begin{align*}
\text{Expt. Data (AEDC)} & \\
\text{Present Results} & \\
\text{Using Correlation} & \\
\end{align*}
\]

\[
\begin{align*}
\gamma_j & = 1.40, 1.30, 1.28 \\
T_n (K) & = 300, 1165, 1580
\end{align*}
\]

Fig. 1 Estimation of afterbody drag with sonic hot jet exhaust, $M_\infty = 0.60$, $\beta = a)$ 15 and b) 25 deg.

Present Results
Using Correlation

\[
\begin{align*}
\text{Expt. Data (NASA)} & \\
\text{Present Results} & \\
\text{Using Correlation} & \\
\end{align*}
\]

\[
\begin{align*}
\gamma_j & = 1.40, 1.30, 1.26 \\
T_n (K) & = 300, 646, 1013
\end{align*}
\]

Fig. 2 Estimation of afterbody drag with sonic hot jet exhaust: a) $M_\infty = 0.80$, $\beta = 20$ deg and b) $M_\infty = 0.90$, $\beta = 20$ deg.

Estimation of afterbody drag with hot jet exhaust had limited success. In the present analysis, a simple correlation is proposed that can be used in the subsonic and transonic Mach number range for the estimation of afterbody pressure drag with jet temperature effects.

Proposed Correlation of Afterbody Drag with Jet Temperature Effects

Afterbody drag characteristics with an underexpanded jet are influenced predominantly by its jet plume displacement effects. Because the specific heat ratio of hot jet (γ_j) is less than that of cold air jet ($\gamma_c = 1.4$), jet plume displacement effects on afterbody drag are relatively larger in the presence of hot jet exhaust than that with the cold jet at the same jet pressure ratio. Hence, if the relative displacement effects of the hot and cold jet could be assessed, it would be possible to estimate, grossly, the jet temperature effects on drag from cold jet test data.

Based on an analysis of the available hot jet test data and experience gained during the cold and hot jet experiments con-
jet at a total temperature \(T_c \) of 300K; and \(\gamma_r \) is the specific heat ratio of the hot jet exhaust.

Validation

To demonstrate the usefulness of the preceding correlation, afterbody drag data, \(C_{D_{AB}} \) obtained from tests at the Arnold Engineering and Development Center (AEDC), and NASA wind tunnels on boat-tailed afterbody configurations with sonic jet exhaust have been used. The jet total temperature involved in these experiments were in the range of 300-1600 K (Table 1). The values of \(\gamma_r \) and \(\gamma_h \) for these cases have been taken from the respective publications and are reproduced in Table I.

Considering the simplicity of the approach, estimates of afterbody drag with jet temperature effects using the preceding correlation show, in general, good agreement (Figs. 1-5) with the hot jet test data generated in AEDC and NASA tunnels. This correlation has been validated against available test data at subsonic and transonic Mach numbers with sonic hot jet (Figs. 1-5) on contoured boat-tailed afterbodies having negligible base thickness and boat-tail angle \(\beta \) in the range of 10-25 deg.

Conclusions

A simple correlation is proposed for the estimation of afterbody drag with hot jet exhaust from the cold jet test data. Good agreement with the available drag data with sonic hot jet exhaust is observed and the proposed correlation may be very useful during preliminary design phase of combat aircraft. The correlation is now being extended to estimate the afterbody drag in the supersonic freestream Mach number range and with supersonic hot jet exhaust.

Acknowledgment

The author is very grateful to P R. Viswanath, Head of the Experimental Aerodynamics Division, for his valuable suggestions during the preparation and progress of this work.

References

Lift Enhancement of a Wing/Strake Configuration Using Pneumatic Blowing

Richard M. Howard,* James G. Willson,t and Craig J. Zgraggen
U.S. Naval Postgraduate School, Monterey, California 93943

Introduction

The maintenance of air superiority in the future will depend upon the ability to perform rapid transient maneuvers at high angles of attack (AOAs), often into the poststall flight regime. Techniques for enhanced lift and control at high AOA are being explored to meet this need. Current-generation fighters often employ strakes for vortex lift; however, at some angle of attack, the strake vortex bursts, reducing the effective lift as well as possibly leading to yaw control loss and tail structural problems.

One technique under study for both yaw control and increased lift is the use of pneumatic blowing, either on the aircraft forebody, at the wing leading edge, or over the lifting surface. Cornelius et al. studied the effects of various nozzle geometries for blowing at the forebody of an X-29 model, and found that a nozzle orientation of 60 deg in the longitudinal axis produced the largest yawing moment four times greater than with tangential wing blowing. LeMay and Rogers conducted a water-tunnel study of the effects of blowing on strake-wing vortex coupling. Vortex breakdown was delayed past an AOA of 36 deg from a blowing port at the midstrake position. All blowing did not produce favorable results: blowing from ports aft of the strake-wing junction sometimes led to earlier vortex breakdown. Roach and Kuhlman mapped strake vortices using laser-light-sheet and laser-Doppler-anemometry methods. Reductions in vortex coupling and delays in vortex breakdown were noted in particular for blowing from the forward port locations slightly behind the strake apex. Johari and Morenot studied the enhanced effects of pulsed blowing during ramped pitching.

Past efforts in analyzing the effect of blowing over a strake-wing configuration have involved flow visualization and flowfield measurements. Though progress has been toward identifying flow mechanisms responsible for vortex breakdown delay and vortex relocation, few measurements of the global effects on the actual lift and drag have been noted. This study treats those effects. Comparisons involve variations in blowing port position, blowing coefficient, blowing sweep angle, and blowing inclination angle.

Experiment

A test was performed with a half-model used in conjunction with a reflection-plane external balance in a low-speed wind tunnel. The three-component balance is an external column strain-gauge balance attached to a turntable mounted flush with the reflection plane. The reflection plane and balance are designed to accommodate half models oriented in the vertical plane. Figure 1 shows a side view of the model mounted in the wind tunnel. The model was comprised of a half-fuselage with ogive forebody, a 36-deg-sweep wing using an NACA 64A008 airfoil, and a sharp 18-deg-wedge 76-deg-sweep strake. The general planform shape followed that of Kern's study used a flat plate with beveled edges. The wing had zero deg of incidence, dihedral, and twist.

Blowing ports 1 and 2 were located 0.235 ft mac and 0.329 ft mac aft of the strake apex, respectively [mac being the wing: mean aerodynamic (geometric) chord]. The blowing tubes were 0.125-in, stainless-steel tubes. Tube 1 was bent (or swept) so the port defined in the same manner as wing sweep) 30 deg, tube 2 was swept 45 deg, and tube 3 was swept 60 deg. Twisting each tube from -10 to 40 deg away from the strake surface allowed for the variation of tube inclination angle.

A mass flow meter was used to determine the blowing coefficient. Air was fed to the tubes from three storage tanks through a regulator at 65 psi. The air moved through urethane tubing to a plenum chamber inside the model before being fed through a regulator at 65 psi.