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Abstract— Cognitive load or mental workload in human 
beings is an important parameter associated with the task 
being performed. The level of task and the learning curve for 
any task has a certain cognitive load or mental workload. 
Apart from causing stress and mental exhaustion, increase in 
cognitive load beyond a critical limit may affect the 
performance on the end task. There is a need to explore non-
invasive and non- intrusive physiological means of measuring 
cognitive load to identify the subjective performance and well 
been. This paper discusses identification of EEG as one of the 
means, identification of suitable EEG frequency bands and 
spatial locations to assess the cognitive load based on available 
literature and also to demonstrate measured load based on an 
experimental study performed using a commonly played 
Sudoku game. 

 
Keywords— Cognitive Load Index, EEG, Sudoku, 

Independent Component Analysis, Workload 

I. INTRODUCTION 

Assessing subject engagement and mental workload during 
the performance of  any mathematical task is one of the 
main challenging tasks in cognitive load estimation [1]. 
Electroencephalogram (EEG) based measurements that infer 
about the involvement of a subject in an activity has been 
commonly deployed as a tool to investigate this workload. 
[2]–[4] Changing the difficulty of cognitive tasks and 
mental workload, reflects noticeable changes in  EEG 
recordings [5][6]. EEG has been a well-defined and utilized 
non-invasive process of acquiring electrical activity 
recorded from the scalp surface.[7],[8]. EEG signals are 
typically steady under various environmental factors and 
thus it is utilized in a real-world scenario [9]. Mental load, 
mental effort and performance are regarded as the main 
aspects of cognitive load[10]. When a task turns out to be a 
tough one, the approachability of outcome becomes slow as 
working memory decreases and cognitive load rises[11]. 
Cognitive Load Theory makes a distinction between three 
types of sources for the learners’ cognitive load: intrinsic, 
extraneous, and germane cognitive load [12]–[14]. All three 
sources are involved in an individual’s attempt to solve a 
problem or to accomplish a task [15],[16]. Theta increases 
with higher cognitive load and alpha decreases for the same 
[17]–[19]. This observation led to several studies that linked 
between theta–alpha frequency generated parameters and 
cognitive load estimation. [20],[21].  

Cognitive Load measurement is said to be sensitive to the 
definite tasks offered to the participant. Therefore it is clear 
that cognitive load  received from EEG signal is  hard to 
relate to user studies of more multifaceted tasks that cannot 
be simply categorized[12]. Oscillatory activity-based BCI 
methods are based on changes in power in known frequency 
bands, in specific brain regions. Hence, there is a need to 
explore both the spatial and spectral statistics to determine 
the load variation more accurately [22].  

The computer based tests creating task batteries have been 
designed based on pre-defined and well acknowledged 
literature. Computer based test has been significantly 
received appreciation for use in the clinical and research 
experiments. The American Psychological Association 
(APA) recognized the value of computerized psychological 
testing and published guidelines in 1986 [23] to support in 
the progress and understanding of computer based test 
results. 

II. PROPOSED METHOD 

Cognitive load measurement using EEG power spectrum 
analysis follows a systematic method involving 
understanding of the user’s brain activity. The scenarios of 
performance are considered, to understand the level of 
cognitive load caused by a task. The methodology which is 
proposed to measure the cognitive load caused by various 
task using EEG system is shown in Fig. 1. 

III. MATERIALS AND METHODS 

A. Participants 

Seven volunteers participated in the experimental study. The 
age of participants was between 25 to 35 years with one 
participant above 50 years of age. Participants met all the 
inclusion criteria: they did not reported suffering from any 
major medical illness, psychiatric conditions or addiction 
history.  The procedure of experiment was explained and 
laboratory facilities were introduced to participants. A 
signed consent form was taken from the participants to take 
part in the study on voluntary basis. EEG data was collected 
from all the 7 participants. Among these, one was uneasy 
with the environmental setup and hence good quality data 
could not be collected. Hence, the final dataset comprised of 
data of six participants for further analysis. 
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Fig. 1  Block Diagram of proposed method to access cognitive load 

 

 
Fig. 2 Flowchart of Processing Steps for EEG Signal 

B. Task Design and Experimental Setup 

Participants  performed  the  test  in  a  lab  environment  
which  was  well  attenuated to sound and  an  isolated  
enclosed environment.  Before the experiment, each and 
every participant was instructed on the rules of the Sudoku 
game, though the participants were familiar with the game. 
Participants had no fixed duration of time to complete each 
set of tasks. Two such sessions were conducted for each 
participant for two difficulty levels: Easy and Hard. After 
the first difficulty level, there was a break of 10 minutes for 
each participant. During the break, participants were asked 
to close their eyes and relax. The participants played the 
game on a 15.6 inch screen in a well illuminated room about 
65 to 70 cm away from every participants for to avoid any 
discomfort during the gameplay. Participant wore the EEG 
headset during the period of study for duration of 35-40 
minutes depending on participant. 

C. Equipment 

Active amplification electrodes are becoming more popular 
for ERP data collection, as they amplify the EEG at the 
scalp and thereby potentially decrease the influence of 
ambient electrical noise [24]. EEG data was collected from 
the participants utilizing sixty four channels. Data were 
digitized and amplified with identical acquisition settings. In 
particular, data was acquired at the sampling rate of 1000 
Hz. All recordings were made in an isolated enclosed room. 

D. Data Analysis 

Out of 64 channels, initial analyses were done with eighteen 
channels of international 10-20 system: Frontal lobes 
(Fp1/Fp2, F3/F4, and F7/F8), Temporal lobes (T7/T8), 

Parietal lobes (P3/P4, P7/P8, C3/C4, C5/C6) and the 
Occipital lobes (O1/O2). The channels were selected based 
on available literature as these channels have been shown to 
provide significant information to discriminate different 
cognitive states [25],[26]. Since EEG measures voltages at 
the scalp, there are many possible sources for data 
corruption that must be addressed. Artifacts related to eye 
blinks and other muscle movements are also there due to 
hand movement to fill the puzzle. Data processing steps 
have been shown in Fig. 2.  

Since these bio-signals belong to different frequency range, 
filters can be used to remove the artifacts i.e. Low-pass 
Filter, High–pass Filter, Band-pass Filter and Notch Filter 
etc. Smoothing and de-trending are the methods for 
computing fractal scaling and removing the trend from the 
signal. The benefits of these processes are that the external 
fluctuation can be removed [27],[28]. After that 8 points 
moving average low pass filter has been applied, which 
would help to remove any high frequency component which 
is mixed with the low frequency components of the signal. 
Bad blocks were removed manually, with further bad data 
removal done with EEGLAB software which runs with 
MATLAB in the background [29], [30]. 

Further data analysis of EEG was done in MATLAB. Short 
Time Fourier Transform (STFT) and Independent 
Component Analysis (ICA) to get hidden information from 
multivariable signal were used to analyze the EEG data 
using EEGLab [31]. In MATLAB the different components 
were examined and few of the components were rejected. If 
the scalp map of the individual component shows the major 
signal distribution from a specific area of brain, then it can 
be supposedly considered as muscle artefact. Power 
distribution should reflect rise in higher frequency region for 
the movement artifacts. Similarly for eye movement 
occipital region in scalp map of the component shows 
concentrated signal distribution. So the component has to be 
rejected as well.  

Individual’s brain wave patterns are unique. This is probable 
to differentiate subjects merely according to their distinctive 
brain activity. This study focuses on the analysis of the theta 
(3 - 8 Hz) alpha (8.5 – 12 Hz) and beta (12.5 – 25 Hz) 
frequency bands, which have been identified as reflecting 
cognitive load assessment in two different levels of 
activities. Analyzing the power spectrum, heat map and 
color map of all eighteen channels, the most contributing 
channels have been narrowed down. The ICA of one subject 
indicating five components has been depicted in Fig. 3.  

 
Fig. 3 ICA of S6 for Both Level of Task 
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Five major components could be found from the study 
which was showing major changes from easy to hard level 
task. Out of them some components are related to brain 
activity and others are artifacts. ICA attempts to reverse the 
superposition by extraction the EEG into mutually 
independent components from selected channels [29], [32]. 

IV. RESULTS AND DISCUSSION 

The main objective of this study was to estimate the 
difference between the two activities of low and high mental 
workload respectively. Though, EEG signal handling is a 
tough task, due to the external noise, power line 
interference, non-stationarity, complexity of the signals. In 
particular, it is required to pre-process the EEG data for 
further analysis. 

Cognitive load comparison of S6 can be done in terms of 
STFT variation of easy and hard mode of Sudoku for 
different bands for channel FP1. Thus, cognitive tasks seem 
to be more challenging for the subject in hard level as 
compared to low level of Sudoku. These results show that 
relating neural measures to a mathematical puzzle solving 
task provided significant confirmation about mechanisms 
and based on mental fatigue in low and high mode of 
Sudoku. The main results were highly comparable to 
literature [33-34] and therefore, validity and reliability of 
data seems to be satisfactory. 

According to literature, it can be inferred that during the 
work, which demands higher cognitive load, an increase in 
theta band activity can be observed and it varies according 
to different level of difficulties of the task. Alpha band 
power and upper beta band powers also show a rise in 
higher cognitive load activity. The study involved a good 
player to realise how much the change in power is reflected 
in some selected regions of brain for change in task 
difficulty. A comparative study shows here how much 
change in power in both alpha and theta band took place 
when the difficulty level went higher (Fig. 4(a)). The four 
channels shown here, FP1, AF3, AF7 and AF4 have been 
found most dominating channels being active during high 
load tasks. The result justifies the established findings and 
proposed results of previous works. Few other channels 
have been also mentioned by previous studies. Hence,  

 
(a) 

Similar comparative results among four less dominating 
channels have been also shown (see Fig. 4(b)). The channels 
selected here, T7, P4, F4 and T8 are also showing the same 
patterns as earlier. But, the amplitude of band power 
indicates these four channels have lesser effect than shown 
by primary four channels. Though the study of P4 supports 

the fact that alpha band power in the parietal region of the 
brain shows fall while increase in load. And among the 
secondary four channels, T8 was found to be most 
prominent. Hence, five channels could be taken into 
consideration for further studies, which includes FP1, AF3, 
AF7, AF4 and T8.  

 
(b) 

Fig. 4 Alpha and Theta Band Power Comparison for Two Different 
Types of Task at Four Major Effective Channels   (a) Primary 

Dominant Channels (b) Secondary Dominant Channels 

As the task result indicates and it has been described earlier 
that three subjects S4, S5, S6 were good at playing Sudoku 
and S1 and S2 were inadequate players. Out of efficient 
subjects S6 and from inefficient subjects S1 has been chosen 
to observe the effect of load due to different ability factor 
between two subjects. Here the objective is to identify the 
difference in load between a person who is familiar to some 
task and another person who is not aware at all. To compare 
between these two subjects, signal power of every frequency 
band has been calculated from the selected channels. For the 
most dominating channel FP1 it can be clearly seen that 
every band shows a change in band power for different 
levels and different subjects (see Fig. 5). 

 
Fig. 5 Band Power Comparison of Two Subjects for Two Different 

Level of Task for FP1 

Another interesting finding, which was observed for the 
channels: AF7, AF4 and T8, where the poor performance 
with the high cognitive load showed a fall in alpha band 
power. This could not be observed in case of good 
performer. Alpha band power of subject S6 showed a rise 
from easy task to hard task. Few studies have shown that 
alpha power decreases with increase in load where 
unfamiliar and new informative tasks are involved. As it can 
be clearly seen form the graphical result that the poor 
subject with high cognitive load and unfamiliarity with the 
game shows a decrease in alpha band power in hard task 
compared to the easier task (Fig. 6). So this can be labelled 
as higher cognitive load, which is taking place in higher 
amount for the poor performer as he just learned the game 
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and was not really comfortable with the game, especially the 
hard one.  But as usual increase in theta band power can be 
observed in every case. This is also larger for the poor 
performer; hence, it was in agreement with literature.  

 

Fig. 6 Comparison of Band Power for Two Level of Task in Alpha 
Band for two different subjects 

After that, the whole data set of each subject for both level 
of tasks have been divided into epochs of 1 second each. 
From both level, power of each and every epoch has been 
calculated for theta and alpha band separately. Hence, each 
level and each frequency band there are 180 power 
components. Then the difference set has been plotted along 
with their mean to easily understand the dominating band 
power. It could be seen that theta band power shows more 
prominent change with change in task difficulty (Fig. 7). 

 
Fig. 7 Band Power Comparison of Two Subjects for Two Different 

Level of Task for FP1 

With increase in workload ratio beta/ (alpha + theta), alpha 
+ theta/beta or theta/alpha should reflect changes in 
frequency power domain [34]. As mid frontal theta power 
increases and  parietal alpha power supresses due to load, 
theta power of FP1 and alpha power of P8 has been 
calculated to evaluate the index result. For six subjects these 
results have been compared between easy and hard task as 
shown in Fig. 8. 

 
Fig. 8 Beta/ (Theta + Alpha) index for all six subjects of two different 

mode of Task 

 It can be observed that five out of six peoples showed 
increase in index from easy to hard level.  

In addition, it is vital, that there were some individual 
steadiness between members in the data, particularly in 
verbally processing. Albeit, all members got a similar 
guidance, there were contrasts between the manners in 
which they processed. A few members were calm and must 
be reminded to continue thinking a few times, while others 
continued conversing with next to no delays. Likewise, a 
few members were exceptionally unequivocal in their 
expressions, while others continued concentrating on the 
undertaking. These distinctions may impact the data, hence, 
further research on these parameters needed members ought 
to be chosen or prepared more precisely. Considering all 
subjects, the common channels have been picked up which 
are showing changes for almost everyone for two different 
mode of task. The channels are FP1, AF7, AF3, AF4, P4 
and T8 which clearly shows the difference. These findings 
agree with currently available literature stating channels, 
which could be utilized for said differentiation of difficulty 
levels.  

V. CONCLUSION 

This paper provides an idea about the changes of cognitive 
load for the two modes of task with different subjects from 
beginner to expert in the task and identifies the related 
contributions of subjects to perform the task. Task that is 
used to gather information about cognitive load has a full 
range of assessment process which provides a sensitive 
assessment of cognitive load. This paper suggested the 
power spectral analysis of EEG to access cognitive load. 
Results obtained from STFT of two modes of experimental 
protocols indicate that increasing the level of difficulty of 
the cognitive task increases the power spectral density of 
theta while decreases for the alpha band for definite regions. 
Separate band powers also showed and reinforced the 
findings while doing assessment of cognitive load. 

A set of channels, shows significant contribution in 
cognitive load distribution and these have been chosen from 
ICA analysis and different signal power studies. The 
findings from previous literatures have been followed in this 
process. Few channels apart from the studied ones which 
were found to be contributory towards cognitive load and 
spatial distribution will be taken into studies in future. Also, 
the effect of other band powers in cognitive load will be 
studied and analyzed further. 

VI. LIMITATIONS 

The number of participants for experiment were not 
appropriate to conclude statistically significant results, 
though agreement with available literature was observed. 
This study is based on a mathematical and spatial perception 
task, excluding time response; hence findings are based on 
mental and mathematical abilities of the subject. Future 
studies should aim at evaluating different aspects of mental 
or cognitive workload- mathematical, verbal, memory short 
and long term, response time etc. 
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