Origin of side-loads in a subscale truncated ideal contour nozzle.

Verma, S.B. and Hadjadj, A. and Haidn, O, (2017) Origin of side-loads in a subscale truncated ideal contour nozzle. Aerospace Science and Technology, 71. pp. 725-732. ISSN 12709638

Full text not available from this repository.
Official URL: https://www.sciencedirect.com/science/article/abs/...

Abstract

An experimental investigation was conducted in a cold flow test facility to identify the origin of various flow conditions that lead to side-load generation in a truncated ideal contour nozzle (of area-ratio 20.66) especially at moderate nozzle pressure ratio range of 20 to 42 during the start-up and shutdown sequences. The major contributors seem to be the transition in flow conditions namely, the change in the circumferential shape of re-circulation region inside the nozzle from a cylindrically dominated regime to a conical one and the end-effect regime that initiate highly unsteady flow conditions in the separation region preceding these transitions. Other flow transitions such as those initiated by the onset of test gas condensation and vice-versa result in a downstream or an upstream jump in separation, respectively, that causes the overall side-load signal to increase. During this flow regime, an increase in the length of the upstream influence region accompanied by a rise in the peak standard deviation value is also observed.

Item Type: Article
Subjects: AERONAUTICS > Aerodynamics
Depositing User: Mrs SK Pratibha
Date Deposited: 25 Feb 2020 14:22
Last Modified: 25 Feb 2020 14:22
URI: http://nal-ir.nal.res.in/id/eprint/13286

Actions (login required)

View Item View Item