Solder reaction between electroless Ni-Sn-P and Sn-3.5Ag

N.T. Manikandanatha, Ying Yangb, Zhong Chenb and J.N. Balaraju*

aSurface Engineering Division, CSIR National Aerospace Laboratories, Post Bag No. 1779, Bangalore 560017
bSchool of Materials Science and Engineering, Nanyang Technological University, Singapore 639798

Abstract

In the present study electroless Ni-Sn-P (6-7 wt.% P and 19-21 wt.% Sn) coating was prepared on copper plates using an alkaline bath. Solder reaction with lead-free Sn-3.5Ag was investigated and compared with Ni-P (6-7 wt.%). Joint strength was studied by forming Ni-P/Sn-3.5Ag and Ni-Sn-P/Sn-3.5Ag micro tensile test specimens. Both Ni-P/Sn-3.5Ag and Ni-Sn-P/Sn-3.5Ag joints were thermally-aged at 180 °C up to 600 h to study their interfacial reactions and tensile properties upon aging. Formation of two interfacial compounds such as Ni$_3$Sn$_4$ and Ni$_{13}$Sn$_8$P$_3$ was observed during the Ni-Sn-P/Sn-3.5Ag solder reaction. It was found that Sn atoms from the solder diffuse through the formed Ni$_3$Sn$_4$ layer to reach the Ni$_3$Sn$_4$/Ni-Sn-P interface, and react with the Ni-depleted region of the Ni-Sn-P layer to form the second IMC, Ni$_{13}$Sn$_8$P$_3$. The tensile strength of the as-reflowed Ni-Sn-P/Sn-3.5Ag solder joints was found to be comparable to that of the as-reflowed Ni-P/Sn-3.5Ag solder joints. Both types of as-reflowed solder joints experience ductile failure in the bulk solder. The strength of Ni-P/Sn-3.5Ag joints drops significantly after aging for 400 h, while the strength of Ni-Sn-P/Sn-3.5A joints drops significantly after aging for 300 h. The Ni-P/Sn-3.5Ag solder joints aged for 400 h and 600 h experience brittle fracture at the Ni$_3$Sn$_4$/solder interface. The Ni-Sn-P/Sn-3.5Ag joints aged for 300 h, 400 h and 600 h experience brittle fracture not only at the Ni$_3$Sn$_4$/solder interface, but also through all of the interfacial layers (Ni$_3$Sn$_4$, Ni$_{13}$Sn$_8$P$_3$ and Ni-Sn-P layers). It was also found that cracking of the metallization at some locations during long-term ageing has led to fast Sn diffusion and accelerated IMC growth at these locations which is responsible for the fast degradation of the Ni-Sn-P/solder joint strength.

Presenting author

* Corresponding author: jnbalraj@nal.res.in (J.N.Balaraju); Tel.: +91-080-25086239, Fax: +91-080-25210113.