Electroless nickel composite coatings containing solid lubricant MoS₂ particles

V. Ezhil Selvi#, Mimosa Sarma, J.N. Balaraju*

Surface Engineering Division, CSIR National Aerospace Laboratories, Post Bag No. 1779, Bangalore 560017

Abstract

Nickel–Phosphorous–Molybdenum disulphide composite coatings were prepared using electroless nickel bath containing Molybdenum disulphide (MoS₂) particles. Plain Ni-P coatings were also prepared for comparison. Sodium Lauryl Sulphate (SLS) as a surfactant was used to disperse the second phase MoS₂ particles in the bath. Thickness of the composite coatings was around 30-40 μm with incorporated 1.5 wt. % MoS₂ particles. Field emission scanning electron microscopy (FESEM) studies showed that the surface morphology of the deposits was found to be rough compared to plain Ni-P deposits. Compositional analysis (EDAX) results showed that the plain Ni-P coating contains about 10 wt.% P. Incorporation of phosphorus content was not affected with the second phase MoS₂ particles inclusion. Differential Scanning Calorimetry (DSC) studies on the deposits showed a marginal increase in the crystallization temperature compared to plain Ni-P deposits indicating improved thermal stability. Composite coatings exhibited microhardness almost similar to plain Ni-P deposits both in as-deposited and heat treated (400°C for 1 hour) conditions. Structural studies carried out on these deposits indicated a single broad Ni (111) peak. In the case of composite coatings presence of additional peaks corresponding to MoS₂ (103) and (105) were observed. To evaluate the electrochemical behaviour of these coatings potentiodynamic polarization and electrochemical impedance measurements were carried out and results were discussed.

Presenting author

* Corresponding author: jnbalraj@nal.res.in (J.N.Balaraju); Tel.: +91-080-25086239, Fax: +91-080-25210113.