AERODYNAMIC AND HEAT TRANSFER STUDIES ON HUB SECTIONS OF A HIGH PRESSURE TURBINE BLADE

Title: AERODYNAMIC AND HEAT TRANSFER STUDIES ON HUB SECTIONS OF A HIGH PRESSURE TURBINE BLADE: SUMMARY REPORT

Document No.: PD-PR-9114

Date of issue: July, 1991

Contents
- Pages: 15
- Figures: 18

Division: Propulsion

External participation: NAL Project No. PR-1-167

Sponsor: Aeronautical Research & Development Board, Min. of Def., G.O.I.

Sponsor's Project No.: NO AERO/RD-134/100/088-89/532

Approval: B.R. Pai Head, Propulsion Division

Keywords: MACH NUMBER, CASCADE, TRANSONIC FLOW, HEAT TRANSFER CO-EFFICIENT, SUBSONIC FLOW, BOUNDARY LAYER, VELOCITY DISTRIBUTION, PRESSURE DISTRIBUTION, ENERGY LOSS CO-EFFICIENT ISO-MACH CONTOURS

Abstract

The stator and rotor blade hub sections designed for a high pressure turbine stage were studied in detail for their aerodynamic and heat transfer characteristics. The profile sections were tested in the National Aeronautical Laboratory Cascade Tunnels over a range of exit flow Mach numbers. The flow field and heat transfer characteristics of the cascades were also analysed by the Euler code based on Denton's method and the boundary layer code incorporating K-€ turbulence model. The results indicated that there was a scope for improving the blade profile sections for high Mach number applications.