Title
AERODYNAMIC CHARACTERISTICS OF ELLIPTIC BODIES
AT M = 2.0 AND 3.0

Authors
Vipan Kumar, Rajeev Kumar, K N N Swamy, Sajeer Ahmed and K Manoharan

Division EAD NAL Project No. E-0-186
Document No. PD EA 9806 Date of issue December 1998
Contents 79 Pages 20 Figures 44 Tables 4 References

External Participation

Sponsor DRDL, Hyderabad
Approval HEAD, EAD
Remarks Elliptic bodies, Supersonic speeds, Aerodynamic data, Wind tunnel tests

Keywords

Abstract
Aerodynamic data is generated on a number of circular and elliptic bodies at Mach numbers of 2.0 and 3.0 at unit Reynolds number of 27 and 32 million per meter respectively. The incidence range covered was from -2.0 to 10 degree. The bodies tested had ellipticity ratios of 1.0, 1.5, 2.0, 3.0 nose fineness ratios of 1.0, 2.0, 3.0 and aft body ratios of 5.0, 6.0 and 7.0. Results show considerable effect of ellipticity on the normal force, pitching moment and drag coefficients. For a body of constant ellipticity ratio, increase in nose fineness ratio shows an increase in the lift coefficient and decrease in the drag coefficient, while the increase in aft body fineness ratio beyond 6.0 shows a decrease in the drag coefficient at higher incidence. Increase in Mach number showed a reduction in lift/drag ratio at higher incidences. Experimental data obtained compared well with the theoretical data estimated using ESDU data sheets.