VALIDITY OF AXIS TRANSFER TECHNIQUE FOR PITCH Damping Measurements

A. Sundara Murthy*
National Aeronautical Laboratory,
Bangalore, India.

Abstract

Results of some experimental investigations undertaken to verify the validity of axis transfer technique for transonic pitch damping measurements on high fineness ratio configurations are presented. Free oscillation tests on three half-models of fineness ratios 10 and 25 were conducted at Mach numbers between 0.7 and 1.2, with three different axes of oscillation. The measured pitch-damping derivatives for two axes were used to compute the derivative for the third axis. Comparison between the transferred and the measured derivatives was in general good for Mach numbers between 0.7 and 1.0 and poor for Mach numbers 1.1 and 1.2.

I. Introduction

Measurement of aerodynamic damping derivatives are usually obtained for a reference center at or near the center of gravity of the configuration. But situations which necessitate evaluation of damping derivatives for a new reference center using known data at other reference centers occur frequently. For example, mechanical interference between the model and sting may not permit model oscillations of sufficient amplitude about the c.g. location. This problem which is common for long slender models particularly in pressurised tunnels where strength and stiffness considerations govern the minimum sting and maximum model sizes, is overcome by conducting tests for all centers of oscillation and the required derivatives about c.g. locations are obtained by a transfer of the measured data. A reliable transfer technique would provide damping data for all desired locations from the measurements about two convenient oscillation centers only, resulting in considerable reduction of testing requirements.

Derivative transfer can be accomplished by the well-known equation which are obtained by linearly superposing the effects of different perturbation velocities (See Ref. 1 for details). From these equations it can be shown that the pitch-damping derivative for any reference center can be computed from the damping derivatives and the normal force slope data at two other reference centers. This technique was applied for blunt re-entry type bodies and a poor agreement between the transferred and the measured pitch-damping derivatives was observed by Wehrend and Rees. Later investigations on a 12° semi-vertex semi-cone with sharp and blunt tips showed a favourable comparison between the transferred and the measured data. From similar tests on a Basic Finner model at subsonic speeds, Nicolaides and Eikenberry concluded that the transfer equations were satisfactory. But Meyer and Serdinsky point out that the usual transfer equations are invalid at moderate to large angles of attack and when large distances are involved and propose new transfer equations applicable at large angles of attack. But a general validation of the transfer technique for different parameters such as configuration variations, Mach number, transfer distance etc. and in particular for slender configurations at high speeds (for which the need is maximum as discussed earlier) does not seem to have been established.

This paper describes the results of some experimental investigations undertaken to verify the validity of transfer technique for pitch-damping derivatives of these slender configurations at transonic speeds. Some results for Mach numbers of 2.0 and 2.48 are also included.

II. Transfer Equation

Equations for transfer of aerodynamic derivatives referred to a given axis system to any other arbitrarily oriented axis system are derived in Ref. 1. For the simple and more common case of only longitudinal separation of axes, the following equation for the unknown damping-in-pitch derivative in terms of the known derivatives about two other axes (or reference centers) and the normal force slope of the configuration can be derived as:

\[
(C_{m} + C_{\alpha m})_{0} = \frac{x_{01}(C_{m} + C_{\alpha m})_{2} - x_{02}(C_{m} + C_{\alpha m})_{1}}{x_{01} - x_{02}}
\]

where the subscripts refer to the axes indicated and the distances \(x_{01}\) and \(x_{02}\) are as indicated in Fig. 1. \(x_{01}\) and \(x_{02}\) are reference lengths.

* Scientist, Aerodynamics Division.

The assistance of K. Prasada Rao of Aerodynamics Division, National Aeronautical Laboratory is acknowledged.
DAMPING TO BE COMPUTED ABOUT 0

\[C_{m_q} = \frac{\delta C_m}{\delta (u' 1' / \bar{V}_m)} \quad C_{m_{\alpha}} = \frac{\delta C_m}{\delta (\alpha 1' / \bar{V}_m)} \]

and

\[C_m = \frac{\text{Pitching moment}}{\frac{1}{2} \rho a^2 \bar{V}_m^2} \]

For all the data presented here, \(D = 1' \) = base diameter of body, \(D \) and \(S \) = body base area, \(\pi D^2 / 4 \)

III. Wind Tunnel Tests

Three half-models of fineness ratio 10 (models 2 and 3) and 23 (model 1) were tested in the NAL 1-Ft Tunnel. Models 1 and 3 had low aspect ratio triangular and rectangular wings respectively at the base and model 2 was a canard configuration. Pitch-damping measurements were made by a side wall mounted free oscillation rig in conjunction with a reflection plate (Fig. 2). Details of the rig are found in Ref. 6. Amplitude of oscillation was about 1.75° from a zero mean angle of attack for all the tests. Measuring measurements were made for at least three different oscillation axes to facilitate comparison between transferred and measured derivatives. Other test conditions are summarised in the table.

The transferred pitch-damping derivatives are compared with the corresponding measured derivatives for various Mach numbers in Figs. 3(a), (b) and (c). The good agreement between the transferred and the measured data for all axis positions at Mach numbers between 0.7 and 1.0 for the three models and for the available data at Mach 2.0 and 2.48 can be noted.

Table: Test Conditions

<table>
<thead>
<tr>
<th>Model</th>
<th>Mach No</th>
<th>Reynolds No (\times 10^6)</th>
<th>Frequency Parameter (\zeta)</th>
<th>Axis, X/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>0.69 - 1.23</td>
<td>0.04 - 0.5</td>
<td>(47, 57, 67)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.005</td>
<td>0.0003</td>
<td>(47, 57, 67)</td>
</tr>
<tr>
<td>2</td>
<td>0.71 - 1.23</td>
<td>0.45 - 0.6</td>
<td>0.025 - 0.05</td>
<td>(660, 705, 750)</td>
</tr>
<tr>
<td>3</td>
<td>0.70 - 1.10</td>
<td>UNKNOWN</td>
<td>0.008</td>
<td>(660, 705, 750)</td>
</tr>
</tbody>
</table>

Based on base diameter, \(D \) = DTMB results on full model (Ref. 7)

IV. Results and Discussions

The transferred pitch-damping derivatives are compared with the corresponding measured derivatives for various Mach numbers in Figs. 3(a), (b) and (c). The good agreement between the transferred and the measured data for all axis positions at Mach numbers between 0.7 and 1.0 for the three models and for the available data at Mach 2.0 and 2.48 can be noted.

![Fig. 2 Free-oscillation rig.](image)

Fig. 2 Comparison of transferred and measured derivatives.

488
Agreement between the two data was generally poor at Mach numbers of 1.09 and 1.23 for models 1 and 2, while it was not so bad for model 3 at M = 1.05 and 1.1. With the limited data available it is not possible to explain the above disagreement. It is likely that due to the presence and movement of shocks on the body at transonic speeds the transfer technique, which derives the effects of pitching about an axis by superimposing the separate effects of pitching and plunging about another axis (as illustrated in Ref. 3) may have some limitations.

Damping measurements were made for four different oscillation axes for model 2 and hence it was possible to compute, for each axis, three different transferred derivatives by considering any two of the other three axes. It thus enabled a study of the effect of relative locations of the axes on the transfer technique. Agreement between the transferred and the measured derivatives was, in general, found to be better when the distance between the axes about which the measurements were obtained was larger.

V. Conclusions

On the basis of the present investigations, the axis transfer technique is, in general, found to be valid for slender configurations at transonic speeds. However, the technique is of doubtful validity in certain critical cases presumably due to the presence and movement of shocks on the body at transonic speeds. This and other limitations of the transfer technique need to be identified by more extensive investigations.

References

2 Wehrend, W.R. Jr. and Reiss, D.E. Jr., Wind Tunnel Tests of the Static and
Dynamic stability characteristics of four Ballistic Re-entry Bodies, " TM X-369, 1960, NASA.

VALIDITY OF AXIS TRANSFER TECHNIQUE FOR
PITCH DAMPING MEASUREMENTS

Sundara Murthy
National Aeronautical Laboratory,
Bangalore, India.

Abstract

Results of some experimental investigations undertaken to verify the validity of axis transfer technique for transonic pitch damping measurements on high fineness ratio configurations are presented. Free oscillation tests on three half models of fineness ratios 10 and 25 were conducted at Mach numbers between 0.7 and 1.2, with three different axes of oscillation. The measured pitch-damping derivatives for two axes were used to compute the derivative for the third axis. Comparison between the transferred and the measured derivatives was, in general, good for Mach numbers between 0.7 and 1.0 and poor for Mach numbers 1.1 and 1.2.

I. Introduction

Measurement of aerodynamic damping derivatives are usually obtained for a reference center at or near the center of gravity of the configuration. But situations which necessitate evaluation of damping derivatives for a new reference center using known data at other reference centers occur frequently. For example, mechanical interference between the model and sting may not permit model oscillations of sufficient amplitude about the c.g. location. This problem which is common for long slender models particularly in pressurised tunnels where strength and stiffness considerations govern the minimum sting and maximum model sizes, is overcome by conducting tests for all centers of oscillation and the required derivatives about c.g. locations are obtained by a transfer of the measured data. A reliable transfer technique would provide damping data for all desired locations from the measurements about two convenient oscillation centers only, resulting in considerable reduction of testing requirements.

Derivative transfer can be accomplished by the well known transfer equations which are derived by linearly superposing the effects of different perturbation velocities (See Ref. 1 for details). From these equations it can be shown that the pitch-damping derivative for any reference center can be computed from the damping derivatives and the normal force slope data at two other reference centers. This technique was applied for blunt re-entry type bodies and a poor agreement between the transferred and the measured pitch-damping derivatives was observed by Wehrend and Reese1. Later investigations on a 12° semi-vertex angle cone with sharp and blunt tips showed a favourable comparison between the transferred and the measured data. From similar tests on a Basic Finer model at subsonic speeds, Nicolaides and Eikenberry2 concluded that the transfer equations were satisfactory. But Meyer and Seredynsky3 point out that the usual transfer equations are invalid at moderate to large angles of attack and when large distances are involved and propose new transfer equations applicable at large angles of attack. But a general validation of the transfer technique for different parameters such as configuration variations, Mach number, transfer distance etc. and in particular for slender configurations at high speeds (for which the need is maximum as discussed earlier) does not seem to have been established.

This paper describes the results of some experimental investigations undertaken to verify the validity of transfer technique for pitch-damping derivatives of three slender configurations at transonic speeds. Some results for Mach numbers of 2.0 and 2.48 are also included.

II. Transfer Equation

Equations for transfer of aerodynamic derivatives referred to a given axis system to any other arbitrarily oriented axis system are derived in Ref. 1. For the simple and more common case of only longitudinal separation of axes, the following equation for the unknown damping-in-pitch derivative in terms of the known derivatives about two other axes (of reference centers) and the normal force slope of the configuration can be derived as:

\[(C_{\alpha} + C_{\alpha \alpha})_0 = \frac{X_{01}(C_{\alpha} + C_{\alpha \alpha})_2 - X_{02}(C_{\alpha} + C_{\alpha \alpha})_1}{X_{01} - X_{02}} \]

where the subscripts refer to the axes indicated and the distances \(X_{01} \) and \(X_{02} \) are as indicated in Fig. 1. \(X_{01} \) and \(X_{02} \) are reference lengths.